From operations to neural network

Principles of object-oriented programming & neural networks

GOkce Aydos

Learning goals

Learning goals

P> apply object-oriented programming principles to implement a neural
network
P> understand the components of a neural network

Fundamentals

income ($) house-age (years) ... house-value ($)

83252 41 ... 452600
83014 21 ... 358500

income ($) house-age (years)

house-value ($)

83252 41 452600
83014 21 358500
Goal learn weights wy, ws, ... such that:
wy - 83252 + wy - 41 4 ... ~ 452600
wy - 83014 + wy - 21 + ... &~ 358500

input hidden output
layer layer layer

Figure 1: a neural network with a single hidden layer

-~ ~input
XA

Figure 2: Components of layers and loss

Implementation

Goal: Implementation using object-oriented programming (OOP)

Class ideas?

Goal: Implementation using object-oriented programming (OOP)
Class ideas?

P Operation

P ParameterOperation
P Layer

P NeuralNetwork

P Optimizer

P Trainer

© WeightMultiply

© ConstantAdd

[@ ParameterOperation

(@vesonenen]
©Trainer \’/ \l®Loss}<]—l©MeanSquaredErrorl

[@ Oprimfzerlﬂ—{@ StochasticGradientDescent]

Figure 3: Implementation example

Code

Questions to ponder &

—_

W

o
°%

. Does it make sense to inherit Loss from Operation?

What happens if we use no activation function (a linear activation)? Try
with single and many layers.

. What happens if we take the the sum of the errors as a loss function?
. What happens if we don't standardize the features before we use them for

training?

. What happens if we choose a learning rate of 1?

Takeaways

P breakpoint () is useful for debugging while interacting with the program
in ipython

P many bugs through Numpy broadcasting, etc scalar multiplyinga (3, 1)
array with a (3,) array. Assertions help.

References

P Code
P 2019, Weidman, Deep Learning from Scratch

P> there are occasional mistakes in the book, refer to the errata in doubt
P German version

https://mygit.th-deg.de/gaydos/from-operations-to-neural-network
https://www.oreilly.com/library/view/deep-learning-from/9781492041405/
https://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=0636920181576
https://play.google.com/store/books/details?id=qJHmDwAAQBAJ

Appendix

y7246??.

BleaNnm< v

8

1.99

AwWwN -

—

4.02
5.98

o Y

Ly

1.5
2.5

? Assume the machine learned some w;s. Are the predictions correct? How
do we test?

? Assume the machine learned some w;s. Are the predictions correct? How
do we test?

I We can compare each prediction p, (using w,s) with the actual house value

? How do we test the prediction quality using math?

? How do we test the prediction quality using math?

I For example by using mean squared error (MSE).

(y — 1) + (Yo —p2)* + . + (y,, — 0)?
n

MSE is - a loss function - measures how erroneous the prediction is

W O w O 0
X—» B]] : > BZZ : —>| Y 0 _t-l:-.o
8 8 Loss value:
sumofredcircles
N—~v N—~v
Hidden layer Output layer
Blue circles represent Blue circles

values of activations represent predictions

Figure 4: Alternative view to components

Linear vs non-linear activation

Target/Predictions

45 4

354

25
20

P
Yy

Most important feature {normalized)

Target/Predictions

5 R o8 R 8 & 8

5 &

.
‘~
s
e * o
.
.
oe.a:'. .
L ..
. §5%, .
® o®
oo. F 4 .‘.
e 2§ e
. o'.. ° ®
A 0 1 2

Most important feature {normalized)

Goal: minimum loss by training:

P> Pick random parameters (weights)

P> Make predictions for a batch of inputs

P Compute loss

P> Find the parameters (weights) that minimize the loss

? How can we find these parameters?

Goal: minimum loss by training:

P> Pick random parameters (weights)

P> Make predictions for a batch of inputs

P Compute loss

P> Find the parameters (weights) that minimize the loss

? How can we find these parameters?

| Taking the partial derivative with respect to each parameter (gradient).
However we typically cannot find the exact minimum, because the loss
function can get very complex.

? What do we do now?

Alternative perspective follows:

? You are stuck on a mountain. How would you get down?

Approach: Find out how much we should change each parameter so that the
loss decreases.

? How can we find out how much the loss L changes if we e.qg., increase the
parameter w by 1?

Approach: Find out how much we should change each parameter so that the
loss decreases.

? How can we find out how much the loss L changes if we e.qg., increase the
parameter w by 1?

I By computing aa—ufl(w1 = 1). If the result is positive, then we decrease w,
and vice-versa. This is called back-propagation.

Back propogation
KN\
Loss gradient
X —> - - —> —> —» Prediction— Loss =% L
f Class values

Y

— e ——— ——

Input Hidden layer Output

layer layer

Gradient descent II
Procedure: Pick a random point, move in direction of the descending path:

Revised algorithm
Goal: minimum loss by training:

P> Pick random parameters (weights)
P Repeat:
P> Make predictions for a batch of inputs
P Compute loss
P> Back-propagate
P> Modify the parameters so that the loss decreases a bit
P> Stop if the loss does not decrease significantly or after a timeout ##

(@ weghmainy
4
(@ rorameteroperation

Ja— :‘\‘@)cmmm
o)

© Newraietwor

 backward(loss_ farray) - None

© parameter_gradients() > Iterable[ndarray]
 parameters() > Iterable(ndarray]
ndarray,

Figure 5: Implementation example with methods

o fit.) > Listindare
o) > Uistindaray) [("G rizer

© o

® opeion
gt naaray

=

@ roromroperaion
B e) o]

o input gradient: ndarray
© output: ndarray

(T

© parameters: Listindarray]
© parameter_gradients: istndarray]

© Newaework

o operations_intialized: bool

< backwara(output_ gradient ndarray) > ndarray
 forward(input: ndarray) > ndarray.
= _outputg > ndarray

‘= _input gradientoutput gradient: ndarray) > ndorray

o

-

© layers: stlLayer]
© loss:Loss

© forwardinput : ndarray) = ndarray

 backwardlloss

ey e]

 optimizer: Optimizer

& i) > Ustindarray)

® opmier

© parameters() > lterablefndarray]

 learning.rate:float
o neural network: NeuralNetwork

o step) > None

© parameter_gradients()->Iterablelndarray)

float

R [E———

. L ndorray) > None
tore_parameter_gradients(): > None.

(=

|o—— o backwardioutput_gradient:naarray) > ndarray

‘actvation: Operation

)

Figure 6: Implementation example with every component

Why OOP?

P> encapsulation of features in a single component — more convenient for
humans to classify components of a program
P> reusability of components, extensibility

	Learning goals
	Fundamentals
	Implementation
	References
	Appendix

