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Learning goals



Learning goals

▶ apply object-oriented programming principles to implement a neural
network

▶ understand the components of a neural network



Fundamentals



income ($) house-age (years) … house-value ($)

83252 41 … 452600
83014 21 … 358500
… … … …

Goal learn weights 𝑤1, 𝑤2, … such that:

𝑤1 ⋅ 83252 + 𝑤2 ⋅ 41 + ... ≈ 452600
𝑤1 ⋅ 83014 + 𝑤2 ⋅ 21 + ... ≈ 358500
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Figure 1: a neural network with a single hidden layer



Figure 2: Components of layers and loss



Implementation



Goal: Implementation using object-oriented programming (OOP)

Class ideas?

▶ Operation
▶ ParameterOperation
▶ Layer
▶ NeuralNetwork
▶ Optimizer
▶ Trainer
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Figure 3: Implementation example



Code

…



Questions to ponder

1. Does it make sense to inherit Loss from Operation?
2. What happens if we use no activation function (a linear activation)? Try

with single and many layers.
3. What happens if we take the the sum of the errors as a loss function?
4. What happens if we don’t standardize the features before we use them for

training?
5. What happens if we choose a learning rate of 1?



Takeaways

▶ breakpoint() is useful for debugging while interacting with the program
in ipython

▶ many bugs through Numpy broadcasting, etc scalar multiplying a (3, 1)
array with a (3,) array. Assertions help.



References



▶ Code
▶ 2019, Weidman, Deep Learning from Scratch

▶ there are occasional mistakes in the book, refer to the errata in doubt
▶ German version

https://mygit.th-deg.de/gaydos/from-operations-to-neural-network
https://www.oreilly.com/library/view/deep-learning-from/9781492041405/
https://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=0636920181576
https://play.google.com/store/books/details?id=qJHmDwAAQBAJ


Appendix



𝑥 𝑦
1 2
2 4
3 6
4 ?
-1 ?



𝑥 𝑦
1 1.99
2 4.02
3 5.98
4 ?
-1 ?



𝑥1 𝑥2 𝑦
1 1 1.5
2 1 2.5
2 2 3
3 1 ?
-1 2 ?



Assume the machine learned some 𝑤𝑖s. Are the predictions correct? How
do we test?

We can compare each prediction 𝑝𝑖 (using 𝑤𝑖s) with the actual house value
(𝑦𝑖).
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How do we test the prediction quality using math?

For example by usingmean squared error (MSE).

(𝑦1 − 𝑝1)2 + (𝑦2 − 𝑝2)2 + ... + (𝑦𝑛 − 𝑝𝑛)2

𝑛
MSE is - a loss function - measures how erroneous the prediction is
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Figure 4: Alternative view to components



Linear vs non-linear activation



Goal: minimum loss by training:

▶ Pick random parameters (weights)
▶ Make predictions for a batch of inputs
▶ Compute loss
▶ Find the parameters (weights) that minimize the loss

How can we find these parameters?

Taking the partial derivative with respect to each parameter (gradient).
However we typically cannot find the exact minimum, because the loss
function can get very complex.

What do we do now?

Alternative perspective follows:
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You are stuck on a mountain. How would you get down?



Approach: Find out how much we should change each parameter so that the
loss decreases.

How can we find out how much the loss 𝐿 changes if we e.g., increase the
parameter 𝑤1 by 1?

By computing 𝜕𝐿
𝜕𝑤1

(𝑤1 = 1). If the result is positive, then we decrease 𝑤1
and vice-versa. This is called back-propagation.



Approach: Find out how much we should change each parameter so that the
loss decreases.

How can we find out how much the loss 𝐿 changes if we e.g., increase the
parameter 𝑤1 by 1?

By computing 𝜕𝐿
𝜕𝑤1

(𝑤1 = 1). If the result is positive, then we decrease 𝑤1
and vice-versa. This is called back-propagation.



Gradient descent II
Procedure: Pick a random point, move in direction of the descending path:

Where would
these three points end up?



Revised algorithm
Goal: minimum loss by training:

▶ Pick random parameters (weights)
▶ Repeat:

▶ Make predictions for a batch of inputs
▶ Compute loss
▶ Back-propagate
▶ Modify the parameters so that the loss decreases a bit
▶ Stop if the loss does not decrease significantly or after a timeout ##

Operation

backward(output_gradient: ndarray) -> ndarray
forward(input_: ndarray) -> ndarray
_output() -> ndarray
_input_gradient(output_gradient: ndarray) -> ndarray

ParameterOperation

WeightMultiply

ConstantAdd

Linear

Logistic

Dense

Layer

backward(output_gradient: ndarray) -> ndarray
forward(input_: ndarray) -> ndarray
_setup_layer(input_: ndarray) -> None
_store_parameter_gradients(): -> None

Loss MeanSquaredError

NeuralNetwork

backward(loss_gradient: ndarray) -> None
forward(input: ndarray) -> ndarray
parameter_gradients() -> Iterable[ndarray]
parameters() -> Iterable[ndarray]
train(features: ndarray, target: ndarray) -> float

Optimizer

step() -> None
StochasticGradientDescent

Trainer

fit(...) -> List[ndarray]

Figure 5: Implementation example with methods



Operation

input: ndarray
input_gradient: ndarray
output: ndarray

backward(output_gradient: ndarray) -> ndarray
forward(input_: ndarray) -> ndarray
_output() -> ndarray
_input_gradient(output_gradient: ndarray) -> ndarray

ParameterOperation

parameter: ndarray
parameter_gradient: ndarray

WeightMultiply

ConstantAdd

Linear

Logistic

Dense

activation: Operation

Layer

breadth: int
parameters: List[ndarray]
parameter_gradients: List[ndarray]
operations: List[Operation]
operations_initialized: bool

backward(output_gradient: ndarray) -> ndarray
forward(input_: ndarray) -> ndarray
_setup_layer(input_: ndarray) -> None
_store_parameter_gradients(): -> None

Loss MeanSquaredError

NeuralNetwork

layers: List[Layer]
loss: Loss

backward(loss_gradient: ndarray) -> None
forward(input: ndarray) -> ndarray
parameter_gradients() -> Iterable[ndarray]
parameters() -> Iterable[ndarray]
train(features: ndarray, target: ndarray) -> floatOptimizer

learning_rate: float
neural_network: NeuralNetwork

step() -> None StochasticGradientDescent

Trainer

neural_network: NeuralNetwork
optimizer: Optimizer

fit(...) -> List[ndarray]

Figure 6: Implementation example with every component



Why OOP?

▶ encapsulation of features in a single component — more convenient for
humans to classify components of a program

▶ reusability of components, extensibility
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