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FPGAS AND SPACE
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RADIATION
IN SPACE

▶ due to solar wind and cosmic rays
▶ magnetosphere protects us from
extraterrestrial radiation
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EXAMPLES OF
RADIATION EFFECTS

▶ short circuits in transistors
▶ more delay on circuit nets
due to cumulative dose

▶ bitflips in circuit flipflops
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EFFECTS OF
BITFLIPS IN FPGAS

▶ configuration memory
▶ application memory
(e.g., RAM, flipflops)
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BITFLIPS IN SPACEBORNE FPGAS:
AN EXAMPLE

▶ one-year mission in space
▶ 1.5 million km away
between sun and earth

▶ 5000 flipflops
▶ 8 Kib BlockRAM



device conf. mem. RAM flipflops

Virtex-4 QV ∼ 300k ∼ 4k ∼ 2k
RT ProASIC3 0 62 4
ATF280 0 0 0
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COMMON FAULT-TOLERANCE APPROACH:
TRIPLICATION
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HARDENING AGAINST BITFLIPS
IN FLIPFLOPS
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ERROR
DETECTION-BASED
FAULT-TOLERANCE
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CASE:
DATA HANDLING ARCHITECTURE

data handling subsystem

fault-tolerant
processor FPGA subsystem



▶ circuits on the FPGA are often hardened
by triplication of flipflops

▶ is error detection-based fault-tolerance
a good alternative?
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ERROR DETECTION-BASED
FAULT-TOLERANCE

▶ only error detection on hardware
▶ hardware recovery
using isolation and reset

▶ transaction-based processing
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EDFT APPLIED ON HARDWARE
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RECOVERY
BY RECOMPUTATION
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PARITY-BASED
ERROR DETECTION
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ERROR DETECTION CLUSTER
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REDUCTION OF CLUSTER ERROR SIGNALS
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ERROR DETECTION CLUSTER + REDUCTION
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CRITICAL PATHS
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LOGICAL OR AS LUT TREE
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PIPELINED ERROR DETECTION
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PIPELINED ERROR DETECTION II
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Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist

for t = 1 to placing try count do
placer seed = t;
place & route the netlist;

end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do

if has enable input || has negated output then
eliminate enable input and negated output;

end
categorize according to clock- and reset-signal;

end
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if location-aware partitioning then
foreach FF category do

…;
for i = 1 to partitioning try count do

while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest scl − 2 FFs;
new cluster = {master,neighbors};
total dist. for this try + =
distances from the master to each neighbor;

end
if total dist. for this try < min. total dist. then

mark this partitioning;
end

end
end

else // random partitioning…
end
add parity-generation and -check circuitry;
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Result: pipelined PBED applied netlist

...
foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;

end
foreach FF do

...
determinemin. sequential distance to all POs;
categorize according to … and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;
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RECOVERY EXAMPLE
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FF FF … FF

PObare

error
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system recovery
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COMPARISON WITH
LTMR
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ERROR DETECTION-BASED FAULT-TOLERANCE
VS. TMR

▶ hardware overhead
▶ area
▶ timing

▶ processing time overhead
▶ software overhead
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EXPERIMENTAL COMPARISON

▶ I99T benchmark circuits
▶ synthesis settings
▶ ProASIC3 FPGA as target architecture
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EDFT VS LTMR - CRITICAL PATH

EDFT(scl = 3)

LTMR
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EDFT VS LTMR - CRITICAL PATH - CLUSTER SIZE
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EDFT VS LTMR - AREA OVERHEAD RATIO -
CLUSTER SIZE
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EDFT VS LTMR - PROCESSING TIME
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EDFT VS LTMR - SOFTWARE OVERHEAD
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RELATED WORK
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RELATED WORK

▶ cross layer end-to-end fault-tolerance solution
▶ parity-based error detection with recomputation on
a known spaceborne FPGA

▶ on application level SW-only techniques are not
sufficient

▶ cross-layer techniques achieve better results
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SUMMARY
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BACKUP SLIDES
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SEQUENTIAL DISTANCE DISTRIBUTION
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LOCATION-AWARE VS RANDOM PARTITIONING I
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LOCATION-AWARE VS RANDOM PARTITIONING II
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PIPELINED VS DIRECT PBED - CRITICAL PATH
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ENABLE FLIPFLOP ELIMINATION

FFD
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FFD
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CONTROL SIGNAL MASKING I

FIFO

FIFO

circuit
A

circuit
B

memory circuit
C

data
read en.

data
write en.

address
data

read en.
write en.
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CONTROL SIGNAL MASKING II
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error
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Related Work



10/51

STORELESS BASIC BLOCK

...
store or branch instruction

...
store or branch

...
store or branch

storeless basic block (SBB) graph

instruction0

...
instructioni

user program

SBB graph

construction
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REGISTER AND MEMORY PARTITIONING

register0
...
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general purpose
registers register0
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register r
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INSTRUCTION DUPLICATION

...
regz ←mem[m]

regx ← regy + regz

...

master SBB
...

regz+ r
2
←mem[m+ a

2
]

regx+ r
2
← regy+ r

2
+ regz+ r

2

...

shadow SBB

instruction
duplication
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COMPARISON BEFORE EACH BRANCH

branch if(regx ̸= regx+ r
2
)

to system recovery

compare instruction

...
branch if(regx > 0)

to SBBi,master

master SBB
...

branch if(regx+ r
2
> 0)

to SBBi,shadow

shadow SBB
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EDDI

▶ ED coverage .98-.99 vs .54-.93 unhardened
▶ but fault inj. on FF-level results in .86
▶ motivation: superscalar architectures
▶ processing overhead .45-1.14 on a 4 inst. per cycle
arch.

▶ can also be implemented on source code level …
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VARIABLE DUPLICATION

int a, b;
...
a = b+5;
...

user program

int a, b,
a_dupl, b_dupl;

...
a = b+5;
a_dupl = b_dupl+5;

if (a != a_dupl)
recovery();

...

hardened program



16/51

BASIC BLOCK SIGNATURES

basic blockx

user program

move signaturex to register

basic blockx

branch if (signaturex ̸= register) to recovery

hardened program
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INVERTED BRANCHES

...
branch if (condition) to x

instructiona+1

instructiona+2

...
instructionx

...

user program

a+ 0

a+ 1

a+ 2

x+ 0

...
branch if (condition) to x− 1

branch if (condition) to recovery
instructiona+1

instructiona+2

...
branch if (condition) to recovery

instructionx

...

hardened program

a+ 0

a+ 1

a+ 2

a+ 3

x− 1

x+ 0
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Performance

▶ fault inj. on seq. and comb. of a processor
▶ 0.77 to 0.84 for EDDI
▶ 0.04 to 0.09 for basic blocks signatures
▶ 0.01 for inverted branches

▶ undetected errors due to jumps from a BB to the
same BB

▶ full error coverage unlikely [Aza+11]
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Cross-layer FT techniques

[Che+16]
▶ processors in terrestrial environments
▶ a combination of low- and high-level techn.
proposed

▶ fault inj. on synthesized and layouted circuits
▶ silent data corruption (SDC): SW terminates, but
error in output

▶ detected but uncorrected error (DUE): SW does not
terminate, restart req.

▶ error coverage
▶ impr =

∑
erroneous outcomes unhardened∑
erroneous outcomes hardened

▶ because not all bitflips lead to a failure, e.g., 40% do
not lead to a failure, e.g., branch prediction
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SEU vs SET
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DIRECT BITFLIPS VS TRANSIENTS ON
COMBINATORICS

▶ electrical pulses on combinational nets (SET)
▶ direct bitflip in a sequential element (SEU)

▶ ProASIC3: bitflips mainly caused by SEUs.
▶ 32nm: error rateSET

error rateSEU < 30%
▶ 22nm: very small increase



22/51

SOFT ERROR RATE COMPARISON IN 22NM NODE

[Sei+12]
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Microsemi RTG4

▶ 65nm
▶ TMR’ed flipflops
▶ SET filter in flipflops
▶ error rate 1000x better than SmartFusion2 FPGA
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Cross section

▶ SEU cross section= error count
fluence

▶ Fluence [particlecm2 ]
▶ calculated for different particle spectrums (linear
energy transfer (LET))
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FAULT TOLERANCE CLASSIFICATION

▶ error detection
▶ concurrent detection
▶ preemptive detection

▶ recovery
▶ error handling

▶ compensation
▶ rollback
▶ rollforward

▶ fault handling
▶ diagnosis
▶ isolation
▶ reconfiguration
▶ reinitialization
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FT TECHNIQUES AGAINST BITFLIPS

▶ fabrication process level
▶ chip layout level
▶ logic level
▶ architecture level
▶ software level
▶ algorithm level
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TMR Techniques
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LOCAL TMR

FFlogic logic
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logic FF majority
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logic
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LOCAL TMR - CRITICAL PATH
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DISTRIBUTED TMR
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GLOBAL TMR
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logic
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logic

clock
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Verification
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SIMULATION FLOW
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simulation

synthesis

tech

simulation PBED tool

PBED

simulation
under
error

injection

compare outcome
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TESTBENCH OVERVIEW

z
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outcome
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RTL1)

PBED3)

testbench
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EDFT
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EDFT APPLIED ON HW
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EDFT APPLIED ON THE REFERENCE DESIGN A
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EDFT APPLIED ON THE REFERENCE DESIGN B
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FSM of Circuit B
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STATE MACHINE OF CIRCUIT B

resetstart parse
header

write
RAM

read
RAM

send
response
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REFERENCE DESIGN PROTOCOL DIAGRAM
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FAULT INJ. TESTBENCH SW FLOWCHART

Write transmit buffer (200 words)

Trigger transmission (1 word)

Wait for 100 cycles

Read transmit buffer (55 words)

response

timeout

response

timeout

timeout

response
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System Recovery
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RECOVERY EXAMPLE

mask

FF FF … FF

PObare

error

PO

reset

data

control
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system recovery
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PROCESSING MODEL

data
processing
circuit

trans-
action
buffer

misc.
buffer
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TRANSACTION ON CYCLE LEVEL

cycleclk t t+ 1 . . . t+ q . . . t+ 1 + p

tb. i/ reqn(0) reqn(1) . . . reqn(q)

tb. /o respn(0) . . . . . . respn(p)

mb. i/o data . . . . . . data

transactionn
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PP COMPARISON - FSM - CRITICAL PATH
OVERHEAD
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PP CRITICAL PATH - I99T - VARIABLE CLUSTER
SIZE
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