ERROR DETECTION-BASED
FAULT-TOLERANCE
FOR SPACEBORNE DIGITAL CIRCUITS

Gokce Aydos

IN THIS TALK

FPGAS AND SPACE
ERROR DETECTION-BASED FAULT-TOLERANCE
COMPARISON WITH LTMR
RELATED WORK AND SUMMARY

FPGAS AND SPACE

RADIATION
IN SPACE

» due to solar wind and cosmic rays

» magnetosphere protects us from
extraterrestrial radiation

EXAMPLES OF
RADIATION EFFECTS

» short circuits in transistors

» more delay on circuit nets
due to cumulative dose

» bitflips in circuit flipflops

EFFECTS OF
BITFLIPS IN FPGAS

» configuration memory

» application memory
(e.g., RAM, flipflops)

v

v

v

v

BITFLIPS IN SPACEBORNE FPGAS:
AN EXAMPLE

one-year mission in space

1.5 million km away
between sun and earth

5000 flipflops
8 Kib BlockRAM

device conf. mem. RAM flipflops

Virtex-4 QV ~ 300k ~ 4k ~ 2k
RT ProASIC3 0 62 4
ATF280 0 0 0

COMMON FAULT-TOLERANCE APPROACH:
TRIPLICATION

Il
triple modular redundancy (TMR)
v

system

system

majority
voter

system

HARDENING AGAINST BITFLIPS
IN FLIPFLOPS

majority
voter

ERROR
DETECTION-BASED
FAULT-TOLERANCE

CASE:
DATA HANDLING ARCHITECTURE

7777777777777777777777777777777

fault tolerant
processor

data handling subsystem

» circuits on the FPGA are often hardened
by triplication of flipflops

» is error detection-based fault-tolerance
a good alternative?

ERROR DETECTION-BASED
FAULT-TOLERANCE

» only error detection on hardware

» hardware recovery
using isolation and reset

» transaction-based processing

EDFT APPLIED ON HARDWARE

PI, [| PI PO PO
—> > cremit —

1 flipflop
'signals
y

A
concurrent
error
detection

error

Y
system
recovery

Yuoljoesueay

RECOVERY
BY RECOMPUTATION

sw FPGA Sw FPGA

re, I'eq/)

/

‘35" n

%‘

‘es"“* (es?

< es? n

anoawin
—

,
9.,

Y

PARITY-BASED
ERROR DETECTION

ERROR DETECTION CLUSTER

clustergp

Y — f .
| : ’ 2 FFa,k *—F T |
ogic : * — ogic
1 B FF, ‘ — l errory

parity parity
generation check

REDUCTION OF CLUSTER ERROR SIGNALS

CiI’CUitPBED

Fata Pobare
PI clustergp S system PO
error recovery

reduction

ERROR DETECTION CLUSTER + REDUCTION

[clusterED,m PO,.. —
Lk k
I L e B

recover
XoRpg7m XoRpc,m OerC

CRITICAL PATHS

tcrit,bare
ffffffffffffff 1 POypare —
C—y—t T — o _(
77777 Lerit+,PBED, 1 —— L

crit+, ,

- error,

D D R | i

Terit,PBED, 1 Lerit,PBED, 2 recover

LOGICAL OR AS LUT TREE

Sinput T\
L4 L/
1
2—|LuT
LUT —LUT |
. —LUT—LUT
—LUT |
sinpu; LuT

depth 1 d—1 d

PIPELINED ERROR DETECTION

CirCUitPBED,pipelined

PI
error® ... error
stagegp stagegp recovery

sequential-distance(error?, PO) = d

PO

PIPELINED ERROR DETECTION II

Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist

Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
end

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;

place & route the netlist;
end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;

Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do
if has enable input | | has negated output then
| eliminate enable input and negated output;
end

Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do
if has enable input | | has negated output then
| eliminate enable input and negated output;
end
categorize according to clock- and reset-signal;
end

if location-aware partitioning then
foreach FF category do

if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end

if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end
if total dist. for this try < min. total dist. then
| mark this partitioning;
end
end

if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end
if total dist. for this try < min. total dist. then
| mark this partitioning;
end
end
end
else // random partitioning

end
add parity-generation and -check circuitry;

Result: pipelined PBED applied netlist

Result: pipelined PBED applied netlist

foreach primary output (PO) do
build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;
end

Result: pipelined PBED applied netlist

foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;

annotate the FFs with sequential distance to this
PO;

end

foreach FF do

determine min. sequential distance to all POs;
categorize according to ... and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;

RECOVERY EXAMPLE

data

PObare — control — PO
mask

» reset

system recovery

COMPARISON WITH
LTMR

ERROR DETECTION-BASED FAULT-TOLERANCE
VS. TMR

» hardware overhead

> area

» timing
» processing time overhead
» software overhead

EXPERIMENTAL COMPARISON

» I99T benchmark circuits
» synthesis settings
» ProASIC3 FPGA as target architecture

EDFT VS LTMR - CRITICAL PATH

51S -
4ns -
3ns - LTMR

2ns

tcrit+

- EDFT(s = 3)

ons -

100 1,000 10,000
bare circuit area A,

EDFT VS LTMR - CRITICAL PATH - CLUSTER SIZE

X

4ns - xooxo o

X x X § %

21S - x X X X %

¥ X x X x
Terit EDFT — Lerit, LTMR . %

0ns 1 x

% ! v

—2ns - g o %]
X

2 3 4 5 6 7 8 9

PBED cluster size s4

EDFT VS LTMR - AREA OVERHEAD RATIO -

CLUSTER SIZE
1.754 x x x x x x
1.54x%

T X
area overhead ratio 42 1257« x x x x X
+,LT X x x X x
1—5 x X x

X
0757 E i i i %
0.5+ !
2 3 4 5 6 7 8

PBED cluster size sy

QO - oommexx X XX

EDFT VS LTMR - PROCESSING TIME

—
oo
|

—_
(@]
|

[
[\V]
1

relative proc. time
—
N

—_
L

bitflip probability per cycle p

EDFT VS LTMR - SOFTWARE OVERHEAD

Yuonoesuea

sw

FPGA

re, g,

]

Inoawin
—

< esP"

:

,
€.,

/

\
‘359")(

Sw

FPGA

e$" "
¢ [/%%éf

re
\\\\glx

RELATED WORK

v

v

v

v

RELATED WORK

cross layer end-to-end fault-tolerance solution

parity-based error detection with recomputation on
a known spaceborne FPGA

on application level SW-only techniques are not
sufficient

cross-layer techniques achieve better results

SUMMARY

BACKUP SLIDES

SEQUENTIAL DISTANCE DISTRIBUTION

0.7

0.6

0.5

Cep bare staged (.4 1
03

0.2+
0.1+

0 2 4 6 8
min. sequential distance to PO d

“~ b18
s D19
-~ b20
- b21
+ b22

1 F

"

LOCATION-AWARE VS RANDOM PARTITIONING I

4ns -

3nsS

tcrit+

21s A

1ns -

100 1,000 10,000

bare circuit area A,

~~ location-aware
-+~ random

LOCATION-AWARE VS RANDOM PARTITIONING II

5,

4,
terity (NS)
o 3 -~ PBED with s; = 3 ar
-+~ PBED with s; = 3 ar

1,000 2,000 3,000 4,000
Abare(CLBs)

PIPELINED VS DIRECT PBED - CRITICAL PATH

58S -

4ns

tcrit+

21S A
1ns-

ons -

31S -

100 1,000 10,000

bare circuit area Ay,

~~« pipelined
~+~ direct

ENABLE FLIPFLOP ELIMINATION

CONTROL SIGNAL MASKING I

data—>
—read en.—

FIFo |[_oata
+—write en.—

FIFO

A

circuit circuit

memor
A y

FIFO | |

FIFO

CONTROL SIGNAL MASKING II

data address

circuit [«—data

B -
data read en.jDa

< pgwriteen.— ——write en.;x[)

error

reset |detection
er$or
system
——mask— recovery mask

memory

Related Work

STORELESS BASIC BLOCK

storeless basic block (SBB) graph

| NN
|
user program ! ‘ . ‘
— ! :
. . |
instruction | ‘ store or branch instruction ‘
SBB graph ! /
-
construction |
instruction; | ‘ . ‘
! :
|
|
|
!

REGISTER AND MEMORY PARTITIONING

partitioned
general purpose
registers
general purpose)
registers register, master
regiTero registers
register 7
——» | register;
partitioning
register,_; sh.?dow
i : registers
register,_;
partitioned
program
memory
program M addence
memory address, master
address, memory
memor
:y, address.
partitioning 2 e

INSTRUCTION DUPLICATION

master SBB

reg, < mem[m]

instruction

shadow SBB

reg, . < mem[m + {]

reg, < reg, + reg,

duplication

reg,, < reg, r+reg, ,

COMPARISON BEFORE EACH BRANCH

master SBB shadow SBB
branch if(regx > 0) branch if(regx+é >
to SBBi,master to SBBi,shadow

compare i struction

branch if(reg. # regHEr)
to system recovery

v

v

v

v

v

EDDI

ED coverage .98-.99 vs .54-.93 unhardened
but fault inj. on FF-level results in .86
motivation: superscalar architectures

processing overhead .45-1.14 on a 4 inst. per cycle
arch.

can also be implemented on source code level ...

VARIABLE DUPLICATION

user program hardened program

int a, b,
a_dupl, b_dupl;

a = b+5;
a_dupl = b_dupl+5;

if (a != a_dupl)
recovery();

BASIC BLOCK SIGNATURES

user program hardened program

AN AN

basic block, move signaturey to register
basic blocky

branch if (signaturey # register) to recovery

AN

a+0
a+1
a+2

xX+0

INVERTED BRANCHES

user program

branch if (condition) to x

instructiong1

instructiongo

instructiony

a+0

a+1
a+2
a—+3

xX—1

X+0

hardened program

branch if (condition) to x — 1

branch if (condition) to recovery

instructiong+1

instructiongo

branch if (condition) to recovery

instructiony

Performance

» fault inj. on seq. and comb. of a processor

» 0.77 to 0.84 for EDDI
» 0.04 to 0.09 for basic blocks signatures
» 0.01 for inverted branches

» undetected errors due to jumps from a BB to the
same BB

» full error coverage unlikely [Aza+11]

Cross-layer FT techniques

[Che+16]

>

| 2

processors in terrestrial environments

a combination of low- and high-level techn.
proposed

fault inj. on synthesized and layouted circuits

silent data corruption (SDC): SW terminates, but
error in output

detected but uncorrected error (DUE): SW does not
terminate, restart req.
error-coverage

imor — > erroneous outcomes unhardened
Pr= > erroneous outcomes hardened

because not all bitflips lead to a failure, e.g., 40% do
not lead to a failure, e.g., branch prediction

SEU vs SET

v

v

v

v

v

DIRECT BITFLIPS VS TRANSIENTS ON
COMBINATORICS

electrical pulses on combinational nets (SET)
direct bitflip in a sequential element (SEU)

ProASIC3: bitflips mainly caused by SEUs.

. error ratespr 0
32nm: e < 30%

22 nm: very small increase

SOFT ERROR RATE COMPARISON IN 22 NM NODE

3GHz; 10 gates per path

1.E+02 -

o \N

o)) 1.E+00 -

o ¢ A

=10

St

o ® 1.E-02-

==

s -4-P. Shivakumar 2002

o S LE04 o Ref. 11

w A This work

» 06+ 44—+ F
600 180 65 32 22

[Sei+12]

Technology Node (nm)

v

v

v

v

Microsemi RTG4

65nm

TMR'ed flipflops

SET filter in flipflops

error rate 1000x better than SmartFusion2 FPGA

Cross section

ion_ error count
» SEU cross section= fluence

particle
2

» Fluence Semz]

» calculated for different particle spectrums (linear
energy transfer (LET))

FAULT TOLERANCE CLASSIFICATION

» error detection

» concurrent detection
» preemptive detection
> recovery
» error handling
» compensation
> rollback
» rollforward
» fault handling
» diagnosis
> isolation
» reconfiguration
> reinitialization

vV vV v v v Vv

FT TECHNIQUES AGAINST BITFLIPS

fabrication process level
chip layout level

logic level

architecture level
software level
algorithm level

TMR Techniques

LOCAL TMR

majority
voter

LOCAL TMR - CRITICAL PATH

tcrit,bare

LTMR

y

majority| -~ *
voter

Lerit+ LTMR

(o

DISTRIBUTED TMR

~| majority

voter

_ | majority

logic

e

falalatals G dulaliaie |

voter

“| majority

voter

e
o
>

GLOBAL TMR

_| majority
voter

~ | majority
voter

“| majority
voter

SELELE

Verification

SIMULATION FLOW

s
e

simulation

simulation
under
error
injection

.

{ compare outcome

TESTBENCH OVERVIEW

stimulus

-
* +DUT,
]

outcome

testbench

1)
2)tech|
i

EDFT

EDFT APPLIED ON HW

PI PO
] target
circuit

1 flipflop
'signals
Y

concurrent
error
detection

error

Y
system
recovery

EDFT APPLIED ON THE REFERENCE DESIGN A

|

! user } target circuit
' | (SW or HW) | ! (HW)

| transaction- ! parity-based
} based : error

|| processing | detection

,,,,,,,,,,,,

prowder component

EDFT applied system

EDFT APPLIED ON THE REFERENCE DESIGN B

detection
and
recovery

user
(SW or HW)

transaction-
based
processing

target
circuit
(HW)

parity-
based
error
detection

provider
component

EDFT applied system

concurrent
— error detection

detection

error handling
by rollforward

recovery

| fault handling
by isolation

FSM of Circuit B

STATE MACHINE OF CIRCUIT B

tart H parse ! send
sta header response

read
RAM

REFERENCE DESIGN PROTOCOL DIAGRAM

sw FPGA Sw FPGA

"eq, "eq,

]

‘e$" "

e,
\%A
esvﬂ)(X (eSV“
¢ /

< esP"

Yuonoesuea

Inoawin
—

,
€.,

/

FAULT INJ. TESTBENCH SW FLOWCHART

!

|Write transmit buffer (200 words) D timeout

lresponse

| Trigger transmission (7 word) D timeout

lresponse

|Wait for 100 cycles I

| Read transmit buffer (55 words) D timeout

lresponse

System Recovery

RECOVERY EXAMPLE

data

PObare — control — PO
mask

» reset

system recovery

PROCESSING MODEL

(A1
trans- data == --7h
. . 1 misc. 1!
—| action ~— processing (+--->! buffer
buffer circuit Neauibbalty

TRANSACTION ON CYCLE LEVEL

CyC/ecIk t t+1 t+q et 14p
th.i/ | reqs(0) | reqs(1) |-+ requ(q) |
th. /o0 resp,(0) |- -- -+ | respn(p)

mb. i/o ! data - -+ data

transaction,

PP COMPARISON - FSM - CRITICAL PATH

OVERHEAD
5,
4,
Leries- (NS) | ~~ LTMR
-+~ direct PBED with s
21 —~ pipelined PBED witl

1,000 2,000 3,000 4,000
Ahare(CLBs)

PP CRITICAL PATH -I99T - VARIABLE CLUSTER

4,

3 4
terit+ (NS) 5]

1

SIZE

100 1,000 10,000

bare circuit area (Ay,)

<« LTMR
-+~ direct PBED with s
—~ pipelined PBED witl

REFERENCES I

E N.Battezzati, L. Sterpone, and M. Violante,
Reconfigurable Field Programmable Gate Arrays for
Mission-Critical Applications. Springer, 2011. DOIL:
10.1007/978-1-4419-7595-9.

@ J.R.Azambuija, S. Pagliarini, L. Rosa, and
F. L. Kastensmidt, “Exploring the limitations of
software-based techniques in SEE fault coverage,”

@ E.Cheng, P. Bose, S. Mitra, S. Mirkhani,
L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, and J. A. Abraham, CLEAR:
Cross-layer exploration for architecting resilience -
combining hardware and software techniques to
tolerate soft errors in processor cores,

https://doi.org/10.1007/978-1-4419-7595-9
https://doi.org/10.1007/s10836-011-5218-7
http://arxiv.org/abs/1604.03062v2

REFERENCES II

B C.Poivey, M. Grandjean, and F. X. Guerre,
“Radiation characterization of microsemi proasic3
flash fpga family,”

[4 B.Gill, N. Seifert, and V. Zia, “Comparison of alpha
particle and neutron-induced combinational and
sequential logic error rates at the 32nm technology
node,”

https://doi.org/10.1109/REDW.2010.6062510
https://doi.org/10.1109/irps.2009.5173251

REFERENCES III

N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile,

V. Ambrose, Q. Shi, R. Allmon, and A. Bramnik, “Soft
error susceptibilities of 22 nm tri-gate devices,” /£FF
Transactions on Nuclear Science, vol. 59, no. 6,

pp. 2666-2673, Dec. 2012, ISSN: 0018-9499. DOI:
10.1109/tns.2012.2218128.

https://doi.org/10.1109/tns.2012.2218128

	FPGAS AND SPACE
	ERROR DETECTION-BASED FAULT-TOLERANCE
	 PARITY-BASED ERROR DETECTION
	COMPARISON WITH LTMR
	RELATED WORK
	SUMMARY
	Appendix
	BACKUP SLIDES
	Related Work
	SW data monitoring - ED by duplicated instructions
	SW control flow monitoring
	Cross-layer exploration for architecting resilience

	SEU vs SET
	TMR Techniques
	Verification
	EDFT
	FSM of Circuit B
	System Recovery
	Pipelined vs direct PBED

