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FPGAS AND SPACE



RADIATION
IN SPACE

» due to solar wind and cosmic rays

» magnetosphere protects us from
extraterrestrial radiation



EXAMPLES OF
RADIATION EFFECTS

» short circuits in transistors

» more delay on circuit nets
due to cumulative dose

» bitflips in circuit flipflops




EFFECTS OF
BITFLIPS IN FPGAS

» configuration memory

» application memory
(e.g., RAM, flipflops)
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BITFLIPS IN SPACEBORNE FPGAS:
AN EXAMPLE

one-year mission in space

1.5 million km away
between sun and earth

5000 flipflops
8 Kib BlockRAM



device conf. mem. RAM flipflops

Virtex-4 QV ~ 300k ~ 4k ~ 2k
RT ProASIC3 0 62 4
ATF280 0 0 0




COMMON FAULT-TOLERANCE APPROACH:
TRIPLICATION

Il
triple modular redundancy (TMR)
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HARDENING AGAINST BITFLIPS
IN FLIPFLOPS

majority
voter




ERROR
DETECTION-BASED
FAULT-TOLERANCE



CASE:
DATA HANDLING ARCHITECTURE

7777777777777777777777777777777

fault tolerant
processor

data handling subsystem



» circuits on the FPGA are often hardened
by triplication of flipflops

» is error detection-based fault-tolerance
a good alternative?



ERROR DETECTION-BASED
FAULT-TOLERANCE

» only error detection on hardware

» hardware recovery
using isolation and reset

» transaction-based processing



EDFT APPLIED ON HARDWARE
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RECOVERY
BY RECOMPUTATION
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PARITY-BASED
ERROR DETECTION



ERROR DETECTION CLUSTER
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REDUCTION OF CLUSTER ERROR SIGNALS

CiI’CUitPBED

Fata Pobare
PI clustergp S system PO
error recovery

reduction




ERROR DETECTION CLUSTER + REDUCTION
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CRITICAL PATHS
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LOGICAL OR AS LUT TREE
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PIPELINED ERROR DETECTION

CirCUitPBED,pipelined

PI
error® ... error
stagegp stagegp recovery

sequential-distance(error?, PO) = d

PO




PIPELINED ERROR DETECTION II




Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist



Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
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Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;

place & route the netlist;
end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;



Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
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pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do
if has enable input | | has negated output then
| eliminate enable input and negated output;
end



Data: technology-level netlist, placing try count,
cluster size, partitioning try count
Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do
placer seed = t;
place & route the netlist;
end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do
if has enable input | | has negated output then
| eliminate enable input and negated output;
end
categorize according to clock- and reset-signal;
end



if location-aware partitioning then
foreach FF category do




if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end




if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end
if total dist. for this try < min. total dist. then
| mark this partitioning;
end
end




if location-aware partitioning then
foreach FF category do
for i = 1 to partitioning try count do
while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest s, — 2 FFs;
new cluster = {master, neighbors},;
total dist. for this try + =
distances from the master to each neighbor;
end
if total dist. for this try < min. total dist. then
| mark this partitioning;
end
end
end
else // random partitioning

end
add parity-generation and -check circuitry;



Result: pipelined PBED applied netlist



Result: pipelined PBED applied netlist

foreach primary output (PO) do
build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;
end



Result: pipelined PBED applied netlist

foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;

annotate the FFs with sequential distance to this
PO;

end

foreach FF do

determine min. sequential distance to all POs;
categorize according to ... and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;



RECOVERY EXAMPLE

data

PObare — control — PO
mask

» reset

system recovery




COMPARISON WITH
LTMR



ERROR DETECTION-BASED FAULT-TOLERANCE
VS. TMR

» hardware overhead

> area

» timing
» processing time overhead
» software overhead



EXPERIMENTAL COMPARISON

» I99T benchmark circuits
» synthesis settings
» ProASIC3 FPGA as target architecture



EDFT VS LTMR - CRITICAL PATH
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EDFT VS LTMR - CRITICAL PATH - CLUSTER SIZE

X

4ns - xooxo o

X x X § %

21S - x X X X %

¥ X x X x
Terit EDFT — Lerit, LTMR . %

0ns 1 x

% ! v

—2ns - g o % ]
X

2 3 4 5 6 7 8 9

PBED cluster size s4



EDFT VS LTMR - AREA OVERHEAD RATIO -

CLUSTER SIZE
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EDFT VS LTMR - PROCESSING TIME
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EDFT VS LTMR - SOFTWARE OVERHEAD
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RELATED WORK
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RELATED WORK

cross layer end-to-end fault-tolerance solution

parity-based error detection with recomputation on
a known spaceborne FPGA

on application level SW-only techniques are not
sufficient

cross-layer techniques achieve better results



SUMMARY



BACKUP SLIDES



SEQUENTIAL DISTANCE DISTRIBUTION
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LOCATION-AWARE VS RANDOM PARTITIONING I
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LOCATION-AWARE VS RANDOM PARTITIONING II
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PIPELINED VS DIRECT PBED - CRITICAL PATH
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ENABLE FLIPFLOP ELIMINATION



CONTROL SIGNAL MASKING I
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Related Work



STORELESS BASIC BLOCK

storeless basic block (SBB) graph
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REGISTER AND MEMORY PARTITIONING
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INSTRUCTION DUPLICATION

master SBB

reg, < mem[m]

instruction

shadow SBB

reg, . < mem[m + {]

reg, < reg, + reg,

duplication

reg,, < reg, r+reg, ,




COMPARISON BEFORE EACH BRANCH

master SBB shadow SBB
branch if(regx > 0) branch if(regx+é >
to SBBi,master to SBBi,shadow

compare i struction

branch if(reg. # regHEr)
to system recovery
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EDDI

ED coverage .98-.99 vs .54-.93 unhardened
but fault inj. on FF-level results in .86
motivation: superscalar architectures

processing overhead .45-1.14 on a 4 inst. per cycle
arch.

can also be implemented on source code level ...



VARIABLE DUPLICATION

user program hardened program

int a, b,
a_dupl, b_dupl;

a = b+5;
a_dupl = b_dupl+5;

if (a != a_dupl)
recovery();




BASIC BLOCK SIGNATURES

user program hardened program

AN AN

basic block, move signaturey to register
basic blocky

branch if (signaturey # register) to recovery

AN



a+0
a+1
a+2

xX+0

INVERTED BRANCHES

user program

branch if (condition) to x

instructiong1

instructiongo

instructiony

a+0

a+1
a+2
a—+3

xX—1

X+0

hardened program

branch if (condition) to x — 1

branch if (condition) to recovery

instructiong+1

instructiongo

branch if (condition) to recovery

instructiony




Performance

» fault inj. on seq. and comb. of a processor

» 0.77 to 0.84 for EDDI
» 0.04 to 0.09 for basic blocks signatures
» 0.01 for inverted branches

» undetected errors due to jumps from a BB to the
same BB

» full error coverage unlikely [Aza+11]



Cross-layer FT techniques

[Che+16]

>

| 2

processors in terrestrial environments

a combination of low- and high-level techn.
proposed

fault inj. on synthesized and layouted circuits

silent data corruption (SDC): SW terminates, but
error in output

detected but uncorrected error (DUE): SW does not
terminate, restart req.
error-coverage

imor — > erroneous outcomes unhardened
Pr= > erroneous outcomes hardened

because not all bitflips lead to a failure, e.g., 40% do
not lead to a failure, e.g., branch prediction




SEU vs SET
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DIRECT BITFLIPS VS TRANSIENTS ON
COMBINATORICS

electrical pulses on combinational nets (SET)
direct bitflip in a sequential element (SEU)

ProASIC3: bitflips mainly caused by SEUs.

. error ratespr 0
32nm: e < 30%

22 nm: very small increase



SOFT ERROR RATE COMPARISON IN 22 NM NODE

3GHz; 10 gates per path
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Microsemi RTG4

65nm

TMR'ed flipflops

SET filter in flipflops

error rate 1000x better than SmartFusion2 FPGA



Cross section

ion_ error count
» SEU cross section= fluence

particle
2

» Fluence Semz ]

» calculated for different particle spectrums (linear
energy transfer (LET))



FAULT TOLERANCE CLASSIFICATION

» error detection

» concurrent detection
» preemptive detection
> recovery
» error handling
» compensation
> rollback
» rollforward
» fault handling
» diagnosis
> isolation
» reconfiguration
> reinitialization
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FT TECHNIQUES AGAINST BITFLIPS

fabrication process level
chip layout level

logic level

architecture level
software level
algorithm level



TMR Techniques



LOCAL TMR
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LOCAL TMR - CRITICAL PATH
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GLOBAL TMR
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Verification



SIMULATION FLOW
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TESTBENCH OVERVIEW
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EDFT



EDFT APPLIED ON HW
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EDFT APPLIED ON THE REFERENCE DESIGN A

|

! user } target circuit
' | (SW or HW) | ! (HW)

| transaction- ! parity-based
} based : error

|| processing | detection
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prowder component

EDFT applied system



EDFT APPLIED ON THE REFERENCE DESIGN B

detection
and
recovery

user
(SW or HW)

transaction-
based
processing

target
circuit
(HW)

parity-
based
error
detection

provider
component

EDFT applied system

concurrent
— error detection

detection

error handling
by rollforward

recovery

| fault handling
by isolation




FSM of Circuit B



STATE MACHINE OF CIRCUIT B

tart H parse ! send
sta header response

read
RAM



REFERENCE DESIGN PROTOCOL DIAGRAM
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FAULT INJ. TESTBENCH SW FLOWCHART

!

|Write transmit buffer (200 words) D timeout

lresponse

| Trigger transmission (7 word) D timeout

lresponse

|Wait for 100 cycles I

| Read transmit buffer (55 words) D timeout

lresponse



System Recovery



RECOVERY EXAMPLE

data

PObare — control — PO
mask

» reset

system recovery




PROCESSING MODEL

( A1
trans- data == --7h
. . 1 misc. 1!
—| action ~— processing (+--->! buffer
buffer circuit Neauibbalty



TRANSACTION ON CYCLE LEVEL

CyC/ecIk t t+1 t+q et 14p
th.i/ | reqs(0) | reqs(1) |-+ requ(q) |
th. /o0 resp,(0) |- -- -+ | respn(p)

mb. i/o ! data - -+ data

transaction,



PP COMPARISON - FSM - CRITICAL PATH

OVERHEAD
5,
4,
Leries- (NS) | ~~ LTMR
-+~ direct PBED with s
21 —~ pipelined PBED witl

1,000 2,000 3,000 4,000
Ahare(CLBs)



PP CRITICAL PATH -I99T - VARIABLE CLUSTER
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