
1/35

ERROR DETECTION-BASED
FAULT-TOLERANCE

FOR SPACEBORNE DIGITAL CIRCUITS

Gökçe Aydos

1/35

IN THIS TALK

FPGAS AND SPACE
ERROR DETECTION-BASED FAULT-TOLERANCE

COMPARISON WITH LTMR
RELATED WORK AND SUMMARY

1/35

FPGAS AND SPACE

2/35

RADIATION
IN SPACE

▶ due to solar wind and cosmic rays
▶ magnetosphere protects us from
extraterrestrial radiation

3/35

EXAMPLES OF
RADIATION EFFECTS

▶ short circuits in transistors
▶ more delay on circuit nets
due to cumulative dose

▶ bitflips in circuit flipflops

4/35

EFFECTS OF
BITFLIPS IN FPGAS

▶ configuration memory
▶ application memory
(e.g., RAM, flipflops)

5/35

BITFLIPS IN SPACEBORNE FPGAS:
AN EXAMPLE

▶ one-year mission in space
▶ 1.5 million km away
between sun and earth

▶ 5000 flipflops
▶ 8 Kib BlockRAM

device conf. mem. RAM flipflops

Virtex-4 QV ∼ 300k ∼ 4k ∼ 2k
RT ProASIC3 0 62 4
ATF280 0 0 0

6/35

7/35

COMMON FAULT-TOLERANCE APPROACH:
TRIPLICATION

systemlogic logic

triple modular redundancy (TMR)

system

logic system majority
voter

logic

system

8/35

HARDENING AGAINST BITFLIPS
IN FLIPFLOPS

FFlogic logic

LTMR

FF

logic FF majority
voter

logic

FF

8/35

ERROR
DETECTION-BASED
FAULT-TOLERANCE

9/35

CASE:
DATA HANDLING ARCHITECTURE

data handling subsystem

fault-tolerant
processor FPGA subsystem

▶ circuits on the FPGA are often hardened
by triplication of flipflops

▶ is error detection-based fault-tolerance
a good alternative?

10/35

11/35

ERROR DETECTION-BASED
FAULT-TOLERANCE

▶ only error detection on hardware
▶ hardware recovery
using isolation and reset

▶ transaction-based processing

12/35

EDFT APPLIED ON HARDWARE

target
circuit

concurrent
error

detection

system
recovery

/
PI

/
PO

/
PIw

/
POw

/flipflopsignals

error

13/35

RECOVERY
BY RECOMPUTATION

reqn

resp
n

reqn+1

resp
n+1

SW FPGA

...

transaction
n

...

reqn

resp
n

tim
eout reqn

resp
n

SW FPGA

...

13/35

PARITY-BASED
ERROR DETECTION

14/35

ERROR DETECTION CLUSTER

clusterED

logic FFa,k logic

parity
generation

FFp

parity
check

//
k

//
k

errorcl

15/35

REDUCTION OF CLUSTER ERROR SIGNALS

PI clusterED

reduction

system
recovery PO

circuitPBED

PObare

error

16/35

ERROR DETECTION CLUSTER + REDUCTION

FFa,k,m

XORpg,m

FFp,m

XORpc,m ORrdc

FF

//
k

//
k

clusterED,m

errorcl,m
//
m

error

recovery

PObare

17/35

CRITICAL PATHS

FFa,k,m

XORpg,m

FFp,m

XORpc,m ORrdc

FF

/ /
clusterED,m

errorcl,m
/

error

recovery

PObare
tcrit,bare

tcrit,PBED,1 tcrit,PBED,2

tcrit+,PBED,1

18/35

LOGICAL OR AS LUT TREE

//
sinput

LUT

LUT LUT

LUT LUT

LUT
LUT

depth 1 … d− 1 d

1
2...

...
sinput

19/35

PIPELINED ERROR DETECTION

PI
staged

ED
… stage0

ED
system
recovery

PO

circuitPBED,pipelined

errord error0

sequential-distance(errord,PO) = d

20/35

PIPELINED ERROR DETECTION II

clusterdED,l clusterd−1
ED,l

FFde FFd−1
e

staged
EDstaged+1

ED

errord+1

staged−1
ED

errord

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist

for t = 1 to placing try count do
placer seed = t;
place & route the netlist;

end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do

if has enable input || has negated output then
eliminate enable input and negated output;

end
categorize according to clock- and reset-signal;

end

21/35

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;
place & route the netlist;

end

pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do

if has enable input || has negated output then
eliminate enable input and negated output;

end
categorize according to clock- and reset-signal;

end

21/35

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;
place & route the netlist;

end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;

foreach FF do
if has enable input || has negated output then

eliminate enable input and negated output;
end
categorize according to clock- and reset-signal;

end

21/35

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;
place & route the netlist;

end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do

if has enable input || has negated output then
eliminate enable input and negated output;

end

categorize according to clock- and reset-signal;
end

21/35

Data: technology-level netlist, placing try count,
cluster size, partitioning try count

Result: direct PBED applied technology-level netlist
for t = 1 to placing try count do

placer seed = t;
place & route the netlist;

end
pick the netlist with the shortest critical path;
extract FF coordinates from this netlist;
foreach FF do

if has enable input || has negated output then
eliminate enable input and negated output;

end
categorize according to clock- and reset-signal;

end

21/35

if location-aware partitioning then
foreach FF category do

…;
for i = 1 to partitioning try count do

while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest scl − 2 FFs;
new cluster = {master,neighbors};
total dist. for this try + =
distances from the master to each neighbor;

end
if total dist. for this try < min. total dist. then

mark this partitioning;
end

end
end

else // random partitioning…
end
add parity-generation and -check circuitry;

22/35

if location-aware partitioning then
foreach FF category do

…;
for i = 1 to partitioning try count do

while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest scl − 2 FFs;
new cluster = {master,neighbors};
total dist. for this try + =
distances from the master to each neighbor;

end

if total dist. for this try < min. total dist. then
mark this partitioning;

end
end

end
else // random partitioning…
end
add parity-generation and -check circuitry;

22/35

if location-aware partitioning then
foreach FF category do

…;
for i = 1 to partitioning try count do

while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest scl − 2 FFs;
new cluster = {master,neighbors};
total dist. for this try + =
distances from the master to each neighbor;

end
if total dist. for this try < min. total dist. then

mark this partitioning;
end

end

end
else // random partitioning…
end
add parity-generation and -check circuitry;

22/35

if location-aware partitioning then
foreach FF category do

…;
for i = 1 to partitioning try count do

while there are unclustered FFs do
master = pick a random FF;
neighbors = pick the nearest scl − 2 FFs;
new cluster = {master,neighbors};
total dist. for this try + =
distances from the master to each neighbor;

end
if total dist. for this try < min. total dist. then

mark this partitioning;
end

end
end

else // random partitioning…
end
add parity-generation and -check circuitry;

22/35

Result: pipelined PBED applied netlist

...
foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;

end
foreach FF do

...
determinemin. sequential distance to all POs;
categorize according to … and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;

23/35

Result: pipelined PBED applied netlist
...
foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;

end

foreach FF do
...
determinemin. sequential distance to all POs;
categorize according to … and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;

23/35

Result: pipelined PBED applied netlist
...
foreach primary output (PO) do

build a FF dataflow graph with this PO as sink
vertex;
annotate the FFs with sequential distance to this
PO;

end
foreach FF do

...
determinemin. sequential distance to all POs;
categorize according to … and
min. sequential distance to all POs;

end
add parity-generation and -check circuitry;

23/35

24/35

RECOVERY EXAMPLE

mask

FF FF … FF

PObare

error

PO

reset

data

control

…

system recovery

25/35

COMPARISON WITH
LTMR

26/35

ERROR DETECTION-BASED FAULT-TOLERANCE
VS. TMR

▶ hardware overhead
▶ area
▶ timing

▶ processing time overhead
▶ software overhead

27/35

EXPERIMENTAL COMPARISON

▶ I99T benchmark circuits
▶ synthesis settings
▶ ProASIC3 FPGA as target architecture

28/35

EDFT VS LTMR - CRITICAL PATH

EDFT(scl = 3)

LTMR

100 1,000 10,000

0ns

1ns

2ns

3ns

4ns

5ns

bare circuit area Aba

tcrit+

29/35

EDFT VS LTMR - CRITICAL PATH - CLUSTER SIZE

2 3 4 5 6 7 8 9

−2ns

0ns

2ns

4ns

PBED cluster size scl

tcrit,EDFT − tcrit,LTMR

30/35

EDFT VS LTMR - AREA OVERHEAD RATIO -
CLUSTER SIZE

2 3 4 5 6 7 8 9

0.5

0.75

1

1.25

1.5

1.75

PBED cluster size scl

area overhead ratio A+,PB
A+,LT

31/35

EDFT VS LTMR - PROCESSING TIME

EDFT

LTMR

0

2 · 10−5
4 · 10−5

6 · 10−5
8 · 10−5

1

1.2

1.4

1.6

1.8

bitflip probability per cycle p

re
la
ti
ve

pr
oc
.t
im

e

32/35

EDFT VS LTMR - SOFTWARE OVERHEAD

reqn

resp
n

reqn+1

resp
n+1

SW FPGA

...

transaction
n

...

reqn

resp
n

tim
eout reqn

resp
n

SW FPGA

...

33/35

RELATED WORK

34/35

RELATED WORK

▶ cross layer end-to-end fault-tolerance solution
▶ parity-based error detection with recomputation on
a known spaceborne FPGA

▶ on application level SW-only techniques are not
sufficient

▶ cross-layer techniques achieve better results

35/35

SUMMARY

1/51

BACKUP SLIDES

2/51

SEQUENTIAL DISTANCE DISTRIBUTION

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

min. sequential distance to PO d

cFF,bare,staged
cFF

b17
b18
b19
b20
b21
b22

3/51

LOCATION-AWARE VS RANDOM PARTITIONING I

100 1,000 10,000

1ns

2ns

3ns

4ns

bare circuit area Aba

tcrit+
location-aware
random

4/51

LOCATION-AWARE VS RANDOM PARTITIONING II

1,000 2,000 3,000 4,000

2

3

4

5

Abare (CLBs)

tcrit+ (ns)
PBED with scl = 3 and location-aware part.
PBED with scl = 3 and random part.

5/51

PIPELINED VS DIRECT PBED - CRITICAL PATH

100 1,000 10,000

0ns

1ns

2ns

3ns

4ns

5ns

bare circuit area Aba

tcrit+
pipelined
direct

6/51

ENABLE FLIPFLOP ELIMINATION

FFD
E Q

FFD

E

Q

7/51

CONTROL SIGNAL MASKING I

FIFO

FIFO

circuit
A

circuit
B

memory circuit
C

data
read en.

data
write en.

address
data

read en.
write en.

8/51

CONTROL SIGNAL MASKING II

FIFO

FIFO

circuit
B

error
detection

system
recovery

memory

error

data
read en.

mask

datadata
write en.

address
data

read en.
write en.

mask

reset

9/51

Related Work

10/51

STORELESS BASIC BLOCK

...
store or branch instruction

...
store or branch

...
store or branch

storeless basic block (SBB) graph

instruction0

...
instructioni

user program

SBB graph

construction

11/51

REGISTER AND MEMORY PARTITIONING

register0
...

registerr−1

general purpose
registers register0

...
register r

2

...
registerr−1

partitioned
general purpose

registers

master
registers

shadow
registers

register

partitioning

address0
...

address a
2

...
addressa−1

partitioned
program
memory

address0
...

addressa−1

program
memory master

memory

shadow
memory

memory

partitioning

12/51

INSTRUCTION DUPLICATION

...
regz ←mem[m]

regx ← regy + regz

...

master SBB
...

regz+ r
2
←mem[m+ a

2
]

regx+ r
2
← regy+ r

2
+ regz+ r

2

...

shadow SBB

instruction
duplication

13/51

COMPARISON BEFORE EACH BRANCH

branch if(regx ̸= regx+ r
2
)

to system recovery

compare instruction

...
branch if(regx > 0)

to SBBi,master

master SBB
...

branch if(regx+ r
2
> 0)

to SBBi,shadow

shadow SBB

14/51

EDDI

▶ ED coverage .98-.99 vs .54-.93 unhardened
▶ but fault inj. on FF-level results in .86
▶ motivation: superscalar architectures
▶ processing overhead .45-1.14 on a 4 inst. per cycle
arch.

▶ can also be implemented on source code level …

15/51

VARIABLE DUPLICATION

int a, b;
...
a = b+5;
...

user program

int a, b,
a_dupl, b_dupl;

...
a = b+5;
a_dupl = b_dupl+5;

if (a != a_dupl)
recovery();

...

hardened program

16/51

BASIC BLOCK SIGNATURES

basic blockx

user program

move signaturex to register

basic blockx

branch if (signaturex ̸= register) to recovery

hardened program

17/51

INVERTED BRANCHES

...
branch if (condition) to x

instructiona+1

instructiona+2

...
instructionx

...

user program

a+ 0

a+ 1

a+ 2

x+ 0

...
branch if (condition) to x− 1

branch if (condition) to recovery
instructiona+1

instructiona+2

...
branch if (condition) to recovery

instructionx

...

hardened program

a+ 0

a+ 1

a+ 2

a+ 3

x− 1

x+ 0

18/51

Performance

▶ fault inj. on seq. and comb. of a processor
▶ 0.77 to 0.84 for EDDI
▶ 0.04 to 0.09 for basic blocks signatures
▶ 0.01 for inverted branches

▶ undetected errors due to jumps from a BB to the
same BB

▶ full error coverage unlikely [Aza+11]

19/51

Cross-layer FT techniques

[Che+16]
▶ processors in terrestrial environments
▶ a combination of low- and high-level techn.
proposed

▶ fault inj. on synthesized and layouted circuits
▶ silent data corruption (SDC): SW terminates, but
error in output

▶ detected but uncorrected error (DUE): SW does not
terminate, restart req.

▶ error coverage
▶ impr =

∑
erroneous outcomes unhardened∑
erroneous outcomes hardened

▶ because not all bitflips lead to a failure, e.g., 40% do
not lead to a failure, e.g., branch prediction

20/51

SEU vs SET

21/51

DIRECT BITFLIPS VS TRANSIENTS ON
COMBINATORICS

▶ electrical pulses on combinational nets (SET)
▶ direct bitflip in a sequential element (SEU)

▶ ProASIC3: bitflips mainly caused by SEUs.
▶ 32nm: error rateSET

error rateSEU < 30%
▶ 22nm: very small increase

22/51

SOFT ERROR RATE COMPARISON IN 22NM NODE

[Sei+12]

23/51

Microsemi RTG4

▶ 65nm
▶ TMR’ed flipflops
▶ SET filter in flipflops
▶ error rate 1000x better than SmartFusion2 FPGA

24/51

Cross section

▶ SEU cross section= error count
fluence

▶ Fluence [particlecm2]
▶ calculated for different particle spectrums (linear
energy transfer (LET))

25/51

FAULT TOLERANCE CLASSIFICATION

▶ error detection
▶ concurrent detection
▶ preemptive detection

▶ recovery
▶ error handling

▶ compensation
▶ rollback
▶ rollforward

▶ fault handling
▶ diagnosis
▶ isolation
▶ reconfiguration
▶ reinitialization

26/51

FT TECHNIQUES AGAINST BITFLIPS

▶ fabrication process level
▶ chip layout level
▶ logic level
▶ architecture level
▶ software level
▶ algorithm level

27/51

TMR Techniques

28/51

LOCAL TMR

FFlogic logic

LTMR

FF

logic FF majority
voter

logic

FF

29/51

LOCAL TMR - CRITICAL PATH

FF

LTMR

FF

FF majority
voter

FF

tcrit,bare

tcrit,LTMR

tcrit+,LTMR

30/51

DISTRIBUTED TMR

logic FF majority
voter

logic

logic FF majority
voter

logic

logic FF majority
voter

logic

31/51

GLOBAL TMR

logic FF majority
voter

logic

logic FF majority
voter

logic

logic FF majority
voter

logic

clock

32/51

Verification

33/51

SIMULATION FLOW

RTL

simulation

synthesis

tech

simulation PBED tool

PBED

simulation
under
error

injection

compare outcome

34/51

TESTBENCH OVERVIEW

z

DUT

stimulus

outcome

tech2)

RTL1)

PBED3)

testbench

35/51

EDFT

36/51

EDFT APPLIED ON HW

target
circuit

concurrent
error

detection

system
recovery

/
PI

/
PO

/
PIw

/
POw

/flipflopsignals

error

37/51

EDFT APPLIED ON THE REFERENCE DESIGN A

user
(SW or HW)

transaction-
based

processing

user component

target circuit
(HW)

parity-based
error

detection

rollforward
by reset

circuit
isolation

provider component

EDFT applied system

38/51

EDFT APPLIED ON THE REFERENCE DESIGN B

user
(SW or HW)

transaction-
based

processing

detection
and

recovery

user
component

target
circuit
(HW)

parity-
based
error

detection

concurrent
error

detection

circuit
reset

error handling
by rollforward

circuit
isolation

fault handling
by isolation

provider
component

EDFT applied system

detection

recovery

39/51

FSM of Circuit B

40/51

STATE MACHINE OF CIRCUIT B

resetstart parse
header

write
RAM

read
RAM

send
response

41/51

REFERENCE DESIGN PROTOCOL DIAGRAM

reqn

resp
n

reqn+1

resp
n+1

SW FPGA

...

transaction
n

...

reqn

resp
n

tim
eout reqn

resp
n

SW FPGA

...

42/51

FAULT INJ. TESTBENCH SW FLOWCHART

Write transmit buffer (200 words)

Trigger transmission (1 word)

Wait for 100 cycles

Read transmit buffer (55 words)

response

timeout

response

timeout

timeout

response

43/51

System Recovery

44/51

RECOVERY EXAMPLE

mask

FF FF … FF

PObare

error

PO

reset

data

control

…

system recovery

45/51

PROCESSING MODEL

data
processing
circuit

trans-
action
buffer

misc.
buffer

46/51

TRANSACTION ON CYCLE LEVEL

cycleclk t t+ 1 . . . t+ q . . . t+ 1 + p

tb. i/ reqn(0) reqn(1) . . . reqn(q)

tb. /o respn(0) respn(p)

mb. i/o data data

transactionn

47/51

PP COMPARISON - FSM - CRITICAL PATH
OVERHEAD

1,000 2,000 3,000 4,000

2

3

4

5

Abare (CLBs)

tcrit+ (ns) LTMR
direct PBED with scl = 3
pipelined PBED with scl = 3

48/51

PP CRITICAL PATH - I99T - VARIABLE CLUSTER
SIZE

100 1,000 10,000

1

2

3

4

bare circuit area (Aba)

tcrit+ (ns) LTMR
direct PBED with scl = 3
pipelined PBED with scl = 3

49/51

REFERENCES I

N. Battezzati, L. Sterpone, and M. Violante,
Reconfigurable Field Programmable Gate Arrays for
Mission-Critical Applications. Springer, 2011. DOI:
10.1007/978-1-4419-7595-9.
J. R. Azambuja, S. Pagliarini, L. Rosa, and
F. L. Kastensmidt, “Exploring the limitations of
software-based techniques in SEE fault coverage,” J
Electron Test, vol. 27, no. 4, pp. 541–550, Apr. 2011.
DOI: 10.1007/s10836-011-5218-7.
E. Cheng, P. Bose, S. Mitra, S. Mirkhani,
L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, and J. A. Abraham, CLEAR:
Cross-layer exploration for architecting resilience -
combining hardware and software techniques to
tolerate soft errors in processor cores, version 2,
Jun. 23, 2016. arXiv: 1604.03062v2 [cs.AR].

https://doi.org/10.1007/978-1-4419-7595-9
https://doi.org/10.1007/s10836-011-5218-7
http://arxiv.org/abs/1604.03062v2

50/51

REFERENCES II

C. Poivey, M. Grandjean, and F. X. Guerre,
“Radiation characterization of microsemi proasic3
flash fpga family,” in 2011 IEEE Radiation Effects Data
Workshop (REDW), Jul. 2011, pp. 1–5. DOI:
10.1109/REDW.2010.6062510.
B. Gill, N. Seifert, and V. Zia, “Comparison of alpha
particle and neutron-induced combinational and
sequential logic error rates at the 32nm technology
node,” in 2009 IEEE International Reliability Physics
Symposium, Institute of Electrical and Electronics
Engineers (IEEE), Apr. 2009, pp. 199–205. DOI:
10.1109/irps.2009.5173251.

https://doi.org/10.1109/REDW.2010.6062510
https://doi.org/10.1109/irps.2009.5173251

51/51

REFERENCES III

N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile,
V. Ambrose, Q. Shi, R. Allmon, and A. Bramnik, “Soft
error susceptibilities of 22 nm tri-gate devices,” IEEE
Transactions on Nuclear Science, vol. 59, no. 6,
pp. 2666–2673, Dec. 2012, ISSN: 0018-9499. DOI:
10.1109/tns.2012.2218128.

https://doi.org/10.1109/tns.2012.2218128

	FPGAS AND SPACE
	ERROR DETECTION-BASED FAULT-TOLERANCE
	 PARITY-BASED ERROR DETECTION
	COMPARISON WITH LTMR
	RELATED WORK
	SUMMARY
	Appendix
	BACKUP SLIDES
	Related Work
	SW data monitoring - ED by duplicated instructions
	SW control flow monitoring
	Cross-layer exploration for architecting resilience

	SEU vs SET
	TMR Techniques
	Verification
	EDFT
	FSM of Circuit B
	System Recovery
	Pipelined vs direct PBED

