
Data exchange in real-time applications using
semaphores

Demonstration of basic principles using a practical example

Gökçe Aydos

class_start

post() wait()





Learning goals



understand semaphore’s working principle



Case study: Odometry in a robot



Figure 1: A wheeled robot

Figure 2: Rotary encoder working
principle



int encoder_value;
...
void encoder_read() { ...

encoder_value = ...;
}
void odometry_process() { ...

odometry += encoder_value;
}
void journal() { ...

fprintf(..., uptime, odometry);
}
INTERRUPT_FROM(ENCODER) encoder_read();
INTERRUPT_FROM(TIMER_10HZ) { odometry_process; journal; }



Figure 3: An analogy: Meet Emily, Otto and Josef

Do you see any problems?



Demonstration: Emily and Otto exchange encoder_val

Do you see any problems?

▶ data integrity
▶ data duplication
▶ data loss



Demonstration: Emily and Otto exchange encoder_val

Do you see any problems?

▶ data integrity
▶ data duplication
▶ data loss



Semaphore



Figure 4: Coastal telegraph, also known as semaphore



How does a semaphore work?

name

post() wait()

Figure 5: Semaphore with a maximum count of 1 and initial value of 0



Semaphore application patterns

{max_count = 1}

post()

wait()

Figure 6: Pattern 1: Resource protection (single)



How would you solve the problem/s we had in the beginning with a
semaphore?



Demonstration: Protecting encoder_value



How can Emily and Otto meet?

{max_count=1}

0

0

otto_is_here

{max_count=1}

Emily
(prio = 3)

Otto
(prio = 2)

emily_is_here

Figure 7: Pattern 2: Rendezvous synchronization

Emily:
post(emily_is_here);
wait(otto_is_here);

Otto():
post(otto_is_here);
wait(emily_is_here);



How can Emily and Otto work one after another?

{max_count = _ }

Emily
(prio = 3)

Otto
(prio = 2)

_____

_____

{max_count = _ }

_

_

Figure 8: Fill the gaps!



Demonstration: Ensuring that Otto works after Emily



Quiz

Would the following solution work in the last problem?

SEmily
(priority = 3)

Otto
(priority = 2)

0

{max_count = 1}

A) Yes
B) No
C) I don’t know



Problem

Imagine we modified encoder_value to a FIFO with a capacity of 3. How can
we leverage a semaphore that there are no more than 3 encoder_values in
the FIFO?



Problem 2

Instead of using a semaphore, we could use a loop like:

int encoder_read_done;

void* odometry_process() {
...
while (!encoder_read_done);
...

}

What are the pros/cons?



Summary



Where can I find semaphores?

Figure 9: Embedded Real-time microkernel Blackberry QNX Neutrino



Further resources I

▶ Demonstrator code

▶ Fan, Real-time Embedded Systems, 2015

Very suitable for introduction, includes many code examples. Many of the
resources in this work is based on this book.

▶ POSIX.1-2017

The standard document. Most of the man pages are based on this doc.
Includes the rationale behind some concepts. Especially relevant: Realtime
services index

More resources I skimmed, but did not use thoroughly:

▶ Arpaci-Dusseau et.al., Operating Systems: Three Easy Pieces, 2018

Enjoyed reading. Contains a chapters about concurrency.

https://mygit.th-deg.de/gaydos/posix-real-time-code-examples
https://educate.elsevier.com/book/details/9780128015070
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/idx/realtime.html
https://pubs.opengroup.org/onlinepubs/9699919799/idx/realtime.html
https://pages.cs.wisc.edu/~remzi/OSTEP/


Further resources II

▶ Tian et.al., (ed.), Handbook of real-time computing, 2022

Based on the latest research, written by many experts. Targeted at
researchers.

▶ Kopetz et.al, Real-Time Systems - Design Principles for Distributed
Embedded Applications, 2022

Based on the lecture notes in Vienna University

▶ Hüning, Echtzeitbetriebssystem, Embedded Systems für IoT, 2018

Principles of real-time OS, a case study based on Renesas Synergy RTOS

▶ Seck, Aufbau Echtzeitbetriebssystem OS9000, 2014

German case study of OS-9 RTOS, part of lecture series about real-time
systems.

https://doi.org/10.1007/978-981-287-251-7
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1007/978-3-662-57901-5_8
https://lms.ee.hm.edu/~seck/AlleDateien/PDTALLES/Vorlesung_ab_WS08/E5_AufbauEchtzeitBetriebssystemOS9_03112014.pdf


Further resources III

▶ Introduction to real-time systems

ROS is popular framework for robotics. Covers ROS programming related
aspects. Real-time tutorial: ROS2 demo: Understanding real-time
programming

https://design.ros2.org/articles/realtime_background.html
https://docs.ros.org/en/humble/Tutorials/Demos/Real-Time-Programming.html
https://docs.ros.org/en/humble/Tutorials/Demos/Real-Time-Programming.html


Appendix



Semaphore pattern

Figure 10: Semaphore pattern: Resource protection (multiple)



if a consumer task T2 must wait for the producer T1:

Task T1
(priority = x)

Task T2
(priority = y)

S

0
{max_count=1}

T1

T2
T1
T2

J11J21 J12 J13
J14J22 J15 J16

Figure 11: Semaphore pattern: Task synchronization

Would a single semaphore with max_count = 2 not suffice?



if a consumer task T2 must wait for the producer T1:

Task T1
(priority = x)

Task T2
(priority = y)

S

0
{max_count=1}

T1

T2
T1
T2

J11J21 J12 J13
J14J22 J15 J16

Figure 11: Semaphore pattern: Task synchronization

Would a single semaphore with max_count = 2 not suffice?



Figure 12: Semaphore pattern: Flow control



Figure 13: Semaphore pattern: Deadlock (circular wait) avoidance

T1() {
...

procure(sem );

access(sr );

procure(sem );

access(sr );

vacate(sem );

vacate(sem );
...

}

T2() {
...
// same as T1()
...

}



Do you see a problem below?

Figure 14: Example showing the disadvantage of the semaphore in case of recursive
requests



Figure 15: Semaphore + mutex pattern: memory management and exclusive access to
control block



Now you are armed with mutex. How would you solve the problem we had in
the beginning using a mutex?

Figure 16: Mutex enables exclusive access



Now you are armed with mutex. How would you solve the problem we had in
the beginning using a mutex?

Figure 16: Mutex enables exclusive access



Condition variable

Figure 17: Condition variable: Guarding mutex for exclusive access + a condition



Condition variable application pattern

Figure 18: Barrier synchronization

Figure 19: Barrier synchronization



Previous problem revisited

S D

p c

Figure 20: Producer consumer problem solved with condition variables



Figure 21: Producer consumer problem solved with condition variables model


	Learning goals
	Case study: Odometry in a robot
	Semaphore
	Summary
	Appendix

