
Exploiting Error Detection Latency
for Parity-based Soft Error Detection

Gökçe Aydos∗
∗University of Bremen

Bremen, Germany
goekce@cs.uni-bremen.de

Goerschwin Fey∗‡
‡German Aerospace Center

Bremen, Germany
goerschwin.fey@dlr.de

Abstract—Local triple modular redundancy (LTMR) is often the
first choice to harden a flash-based FPGA application against soft
errors in space. Unfortunately, LTMR leads to at least 300% area
overhead. We propose a parity-based error detection approach,
to use the limited resources of space-proven flash-based FPGAs
more area-efficiently; this method can be the key for fitting the
application onto the FPGA.

A drawback of parity-based hardening is the significant impact
on the critical path. To alleviate this error detection latency,
pipeline structures in the design can be utilized. According to
our results, this eliminates from 22% to 65% of the critical
path overhead of the unpipelined error detection. Compared with
LTMR, the new approach increases the critical path overhead of
LTMR by a factor varying from 2 to 7.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are often utilized in
space avionics. The avionics must be protected from ionizing
radiation in space. In the absence of a shield (e.g., magnetic
field of the earth), a high energy particle can traverse through a
digital circuit and induce significant amount of charge, which
can cause soft errors. These errors are not permanent and can
be corrected e.g., by a reset. In flash-based FPGAs, soft errors
mainly happen in the flip-flops (FFs) of an FPGA application
in form of bitflips. The FPGA configuration bits do not have
to be protected, because flash memory has a negligible soft
error rate.

One of the popular flash-based FPGAs is the ProASIC3 [1].
This FPGA has 130 nm feature size and a lower logic density
compared to SRAM-based FPGAs in the market, but it is the
state-of-the-art FPGA for space applications ([2], [3]). This
FPGA does not have inherent protection against soft errors in
FFs, and the standard hardening solution is local triple mod-
ular redundancy (LTMR). In LTMR, the application FFs are
triplicated and their outputs are voted, which protects against
single bitflips. LTMR is shown in Figure 1. Unfortunately,
triplication has a significant area overhead of at least 300%.

Hardening a circuit against soft errors on design level
is mostly done by redundancy (e.g., in LTMR by space
redundancy). LTMR detects and corrects errors locally, which
comes at the cost of additional space. Alternatively, a part

This work has been supported by the European Union’s Horizon 2020
research and innovation program under grant agreement No 637616
(MaMMoTH-Up) and by the University of Bremen’s Graduate School SyDe,
funded by the German Excellence Initiative.

FFLogic Logic

LTMR

FF

Logic FF Majority
Voter

Logic

FF

Fig. 1. Application of local triple modular redundancy on user logic

of the area redundancy in the FPGA may be eliminated by
combining space and time redundancy, such as: only error
detection on hardware and on-demand transaction-retry (i.e.,
recomputation) on software, if the error rate is less than a
dozen bitflips per year. In our previous work [4], we evaluated
a parity-based error detection (PBED) approach to use the
limited resources of space-proven flash-based FPGAs more
area-efficiently, which can be the key for fitting the application
onto the FPGA.

Triplication [5] and parity-based code, which is a concur-
rent error detection technique (CED) [6], are well-known.
Recomputation for achieving error correction has also been
proposed [7], [8].

In our previous work [4], we applied LTMR and PBED-
based hardening on a reference architecture and experimentally
compared circuit area overhead, maximum frequency and the
needed processing time using an example mission under fault
injection. The results for a fixed cluster size showed that at
least 30% of the area overhead caused by LTMR can be saved
by implementing PBED and correcting the errors with time
redundancy. In this previous implementation the impact on the
critical path of the circuit was significant. Our contributions
in this work consist of:

• a pipelined error detection and handling approach to
alleviate the impact of PBED on the critical path of the
circuit

• the concept of a parity-based hardening tool, which
implements this approach



data handling subsystem

fault-tolerant
processor FPGA subsystem

link links

Fig. 2. Example on-board data handling architecture. FPGA must be hardened
by design. Figure reused from [4].

• empirical comparison of the pipelined- with approach
from our previous work [4]

• empirical comparison of PBED and LTMR using the new
approach

In the following sections, we will firstly present how PBED
is applied on an example processing architecture and the
system requirements for applying PBED. In Section III, we
introduce the pipelined error detection approach and describe
how to apply it on a circuit automatically. In Section IV, we
compare pipelined error detection to our previous approach
and LTMR using experimental results.

II. ERROR DETECTION BASED HARDENING ON AN
EXAMPLE DESIGN

LTMR detects and corrects the bit error locally in the same
clock cycle, but PBED detects an error on the module level
and this error can live for further cycles until correction. In
the latter approach, there is an error correction latency and
this latency places additional demands on the system. These
are discussed in the following example.

Figure 2 shows an on-board data handling architecture. The
processor runs the mission software and uses the FPGA as
an extensible interface module for communicating with the
subsystems. In this architecture the processor and subsystems
are assumed to be sufficiently hardened against soft errors, but
the FPGA must be hardened by design.

The subsystems are manipulated via memory access, i.e.,
the mission software sends a data packet, which is written to
a particular memory area in the FPGA. In turn, this memory
access can trigger an action in the subsystem. The circuit in
the FPGA for decoding the data packets are shown in Figure 3.
Circuit (A) queues packets sent by the processor, circuit
(B) decodes the packets and writes to respective memory
addresses in circuit (C). Circuits (A) and (C) are assumed
to be sufficiently hardened (e.g., by using LTMR) and circuit
(B) is protected by error detection based hardening.

The gray components in Figure 3 are used for hardening
the circuit (B). The error detection module implements a
concurrent error detection technique (in this work, parity-
based). The error handling module implements the actions that
must be taken after an error is detected. Error handling has
two roles:

• recovering circuit (B) from the unknown state
• isolating circuit (B) from the rest of the system while it

is in an unknown state
After processing one packet, circuit (B) sends a response

packet to the software and falls back to reset state. Therefore
the recovery can be done by a reset.

FIFO

FIFO

circuit
(A)

circuit
(B)

error
detection

error
handling

mem.

circuit
(C)

error

data
read en.

mask

data
write en.

address
data
data

read en.

write en.

mask

reset

Fig. 3. Example circuit for decoding remote memory access requests. Circuit
(B) is hardened using the gray components. Figure reused from [4].

reqn

resp

reqn+1

resp

SW FPGA reqn
resptim

eout reqn

resp

SW FPGA

Fig. 4. Transaction-based processing and transaction-retry after a soft error
in hardware. Figure reused from [4].

Sending a response is not only important for flow control
but also for detecting an error. Due to the fact that we allow
errors in circuit (B) that cannot be corrected immediately, the
software must use transaction-based processing. This gives the
software the opportunity to repeat the last processing request
(i.e., resend the last packet) after a timeout, if circuit (B)
cannot send any response due to a recovery event. Transaction-
based processing is visualized in Figure 4.

The goal of isolation is that an error in circuit (B) does
not propagate to the rest of the system. This can be achieved
by masking the output signals. If the circuit interface includes
control signals, further resources can be saved by only masking
the control signals like write- and read-enable in Figure 3.

III. PIPELINED ERROR DETECTION AND HANDLING

In PBED, the error signal can be generated directly or by
using pipelining, where the latter gives better timing results
with insignificant area overhead. In this section, we explain
the latter technique more in detail and show a comparison
with direct error signal generation based on synthesis results.
Finally, we present a toolchain to implement these techniques
on an FPGA.

A. Pipelining

PBED is based on two modules: error detection and error
handling. The error detection module itself consists of many
smaller error detection clusters and additional circuitry which
reduces all the error signals output by the clusters to a single
error signal. Figure 5 shows the structure of an error detection
cluster clusterED. One cluster consists of k application FFs
FFa, one parity FF FFp and two XORs: one for parity



clusterED

FFa,k

FFp

/
k

/
k

errorcl

Fig. 5. Error detection (ED) cluster calculates the parity for a variable count
of FFs and checks the parity in the following cycle. In case of mismatch, the
cluster error signal is activated. The FF subscripts a and p denote application
and parity respectively. In one cluster there are k application FFs and one
parity FF.

PI clusterED error
handling PO

circuitPBED,direct

/ / / /
PObare

/ error /

Fig. 6. PBED with direct error detection

generation and one for parity checking. The XORs are logical;
they resemble an XOR tree dependent on the number of
respective input signals and used FPGA architecture. If one
bit in the cluster flips, the cluster error signal errorcl is active.
FFa count k in a cluster is an input parameter and will be
expressed using cluster size scl = k + 1.

Generally, a PBED-hardened circuit contains many of these
clusters, whose error outputs can be reduced to a single error
signal by ORing them (Figure 6). We call this approach PBED
with direct error detection. This operation creates a deep OR-
tree, dependent on the size of the hardened circuit. This in
turn has a negative impact on the critical path and maximum
frequency. For example, on a circuit with 121 FFs, PBED
causes a critical path overhead tc+ of 8 ns (added to the critical
path of the original circuit), which is five times the tc+ of
LTMR, reducing the maximum frequency of the bare (i.e.,
unhardened) circuit from 81 MHz to 49 MHz, compared to the
LTMR version achieving 71 MHz. [4]

Alternatively, a long error detection path can be broken into
shorter paths by using inherent pipeline structures in a circuit.
A data processing circuit, e.g., an instruction processor, utilizes
many stages to process an instruction before it is evaluated.
This latency introduced by a circuit can be exploited for error
detection on the module level. For example, if a memory write
instruction takes five cycles before corresponding memory
signals are activated, and the data word is written, then it
is sufficient to handle a bitflip in this particular instruction
five cycles later. In other words, in the same cycle when this
word is written to memory. In this work, the approach is called
PBED with pipelined error detection.

In pipelined error detection, FFs are grouped according to
their sequential distance dseq to any primary output (PO) of
the circuit. dseq is defined as the minimum number of cycles
that a bit needs to be visible at PO. For example, a FF whose

PI
stagedED

. . . stage0ED
error

handling
PO

circuitPBED,pipelined

/ errord error0 /

sequential-distance(errord,PO) = d

Fig. 7. Interconnect between pipelined error signal propagation and error
handling.

clusterdED,l clusterd−1
ED,l

FFd
e FFd−1

e

stagedED

/
l

staged+1
ED

errord+1

staged−1
ED

errord

Fig. 8. PBED with pipelined error detection

output is a PO of the circuit has dseq = 0. FFs with dseq = d
belong to a particular error detection stage, which is named
stagedED. These stages are visualized in Figure 7.

The inner structure of a stage is shown in Figure 8.
Analogous to direct error detection, the FFs are grouped in
clusters within a stage. Stages contain an error FF FFd

e , which
stores the error signal that is coming from the previous stage,
with the exception of the leftmost stage with the greatest dseq.
The error signal of stagedED, errord, is generated by ORing the
buffered error signal from the last stage and the error signals
from the clusters within the stage.

The error signal generated by direct and pipelined error
detection (error and error0, respectively) are fed to the er-
ror handling module. The error module is responsible for
(1) recovering the circuit from the unknown state and (2)
isolating the circuit from the rest of the system while it is
in the unknown state. An example implementation is shown
in Figure 9. Isolation is realized by masking the appropriate
nets from the POs of the bare circuit (PObare), which can alter
the state of the system, e.g., the control signals of a memory
interface. The masking starts in the same cycle when the error
signal is visible at PO and remains active until the circuit is
reset. As long as the circuit is in isolated state, the circuit
can be asynchronously reset with the help of a shift register.
The number of FFs in the shift register must be chosen such
that all FFs in the circuit are guaranteed to be reset after the
respective number of reset cycles.

B. Algorithm

PBED can be implemented on-top of a technology-level netlist
using an automatic tool1. The pseudo code of the PBED appli-
cation program is shown in Algorithm 1. Before processing,
the netlist needs to be parsed, for which we used Verilog-
Perl [9]. Then, all the FFs with enable input must be replaced
with a basic FF and a multiplexer, which is normally also

1Tool available at https://gitlab.informatik.uni-bremen.de/goekce/pbed

https://gitlab.informatik.uni-bremen.de/goekce/pbed


mask

FF FF . . . FF

error handling

PObare

error

PO

reset

/
/data

/control
/

/

..
.

Fig. 9. Example implementation of error handling module. When the error
signal is active then the control signals are masked to isolate the circuit in
the same cycle. In subsequent cycles, the reset signal is hold active and the
circuit falls back to reset state.

done in LTMR. The multiplexer emulates the enable behavior
by switching between the output of the FF and the input data
which must be fed to the FF when enable signal is active. This
is crucial, because an enable FF is not updated in every cycle,
but only when the enable input is activated. If a soft error
happens on enable FFs, these errors can eventually accumulate
and are undetectable for even number of bitflips in a cluster.

If pipelined error detection is used, dseq for every FF must
be determined. For this purpose, a FF-only dataflow graph is
generated by setting the POs as sink vertexes and exploring the
design using breadth-first search and only adding the FFs to
the graphs. While traversing, the FFs are annotated with dseq
to each particular PO. Subsequently, the minimum of these
dseqs is determined, which corresponds to dseq to the output.

In the next step, the FFs are put to clusters according to
cluster size, and clock and reset signals of FFs. The FFs in a
cluster must be sensitive to the same edge. Furthermore, all the
FFs in a cluster must have the same reset type: all active-low
or -high. These countermeasures enable the connection of the
parity FF to the same clock and reset signal of the application
FFs in the cluster possible. After the clusters are generated,
the generation of stages is done according to Section III-A.
In case of direct error detection, dseq does not play a role,
therefore only clusters are created and the cluster errors are
reduced.

Finally, the netlist must be recompiled along with the
error handling module. Before that, the synthesizer must be
instructed to not optimize the redundancies away, because
the tools normally presume no external effects (e.g. bitflips)
during optimizations. The error handling module is designed
manually using HDL. After compilation, the module is ready
to be verified under error injection.

C. Overall toolflow

In previous sections, we explained the concept of pipelined-
and direct error detection in detail. The implementation of
these techniques requires further attention regarding the design
flow to follow. In this subsection, we show the overall toolflow
that we used with some remarks.

Figure 10 shows an overview of our toolflow, which is partly
analogous to classic FPGA design flow. Often, verification of
the technology netlist is skipped in the FPGA design, and

Data: technology netlist
Result: PBED applied technology netlist
foreach FF do

if has enable input then
eliminate enable input;

end
end
if pipelined error detection then

foreach primary output (PO) do
build a FF dataflow graph with this PO as sink
vertex;

end
end
foreach FF do

if pipelined error detection then
determine min. sequential distance to output by
using the FF dataflow graphs;

categorize according to clock-, reset-signal and
min. sequential distance to output;

else
categorize according to clock- and reset-signal;

end
push to a cluster according to cluster-size and

category;
end
foreach cluster do

add parity-generation and -check circuitry;
end
if pipelined error detection then

for sequential distance (dseq)=max to 0 do
put clusters with dseq to a new stage;
reduce cluster error signals to a single error
signal;

merge the error signal from the previous stage;
add an error FF to the stage;

end
else

reduce cluster error signals to a single error signal;
end

Algorithm 1: Application of PBED to a technology netlist

the design is tested directly on an experimental board or
real hardware. This also applies to LTMR, because it is a
straightforward approach to harden a circuit against soft errors.
But verification of complex redundancy techniques needs a
verification on the technology level under error injection. This
approach is also used for PBED, in which error handling
module can be implemented differently for different target
circuits.

To verify the hardened circuit against soft errors time-
efficiently, the testbench should be designed in such a way
that:

• the RTL-design under test can be easily replaced with a
technology netlist, which is mostly achieved by operating
on the primary inputs and outputs of the design under test,



RTL

simulation

synthesis

tech

simulation PBED tool

PBED

simulation
under
error

injection

compare outcome

Fig. 10. Simulation flow for verifying the PBED-applied circuit.

z

DUT

stimulus

outcome

tech2)

RTL1)

PBED3)

Fig. 11. PBED testbench overview. Design is tested using RTL-, technology-
and finally PBED-applied-netlist. In the last case, error injection is also
activated.

but not directly on the internal signals, which will be not
accessible in a technology netlist due to optimization

• the test scenarios should deal with the unresponsive states
of the circuit, e.g., when an error is detected and the
recovery of the circuit is in action

• the simulation software allows access to the elements of
the netlist, especially to FFs for error injection

The PBED testbench with these countermeasures implemented
is visualized in Figure 11. Design is tested using RTL-,
technology- and finally PBED-applied-netlist. In the last case,
error injection is also activated.

For error injection in our simulation flow, we used the
Foreign Language Interface [10] for the simulation software
Questa (Mentor Graphics), which allows access to the netlist
elements and allows to simulate bitflips. In reality, a soft
error can normally be overwritten in the next cycle by the
new data. To reproduce this behavior in the simulation, we
flipped the target bit by simply setting the signal to the inverted
value (instead of forcing and releasing a signal), which can be

Acomb+ AFF+ A+ tc+ (ns)

cst wd PD PP PD PP PD PP PD PP 1− tc+,PP

tc+,PD

4 8 51 47 18 21 69 68 7.84 5.24 33.21%
4 16 94 91 34 37 128 128 8.79 6.83 22.32%
4 32 177 178 66 69 243 247 9.89 7.74 21.75%
4 64 346 331 130 133 476 464 11.71 8.08 31.03%
8 8 94 93 34 41 128 134 7.84 4.47 43.06%
8 16 176 169 66 73 242 242 9.28 5.47 41.01%
8 32 347 349 130 137 477 486 10.41 6.16 40.85%
8 64 693 663 258 265 951 928 11.68 7.51 35.74%

16 8 177 177 66 81 243 258 8.80 4.86 44.81%
16 16 347 334 130 145 477 479 10.01 5.30 47.00%
16 32 692 685 258 273 950 958 11.23 5.26 53.15%
16 64 1369 1330 514 529 1883 1859 11.66 6.94 40.48%
32 8 347 341 130 161 477 502 10.50 3.66 65.10%
32 16 692 663 258 289 950 952 10.82 4.00 63.03%
32 32 1370 1361 514 545 1884 1906 11.50 5.05 56.06%
32 64 2735 2654 1026 1057 3761 3711 13.35 6.75 49.40%

TABLE I
PBED SYNTHESIS RESULTS FOR DIRECT (PD) AND PIPELINED (PP) ERROR

SIGNAL PROPAGATION WITH FIXED CLUSTER SIZE scl = 3.

overwritten in the next cycle.

IV. SYNTHESIS RESULTS AND COMPARISON WITH LTMR

In this section, we compare pipelined error detection to our
previous approach and LTMR using experimental results.

A. Comparison of pipelined- with direct-error detection

To show the positive effect of pipelined error detection on
the critical path of a PBED-applied design, we synthesized a
generic shift register without any combinatorics using follow-
ing input parameters:

• data width wd = {8, 16, 32, 64}
• stage count cst = {4, 8, 16, 32}

Then, we applied PBED with direct (PD) and pipelined (PP)
error detection on the netlists with cluster size scl = 3 and
gathered the following output parameters for both approaches:

• combinational area overhead Acomb+ (number of tiles
added to the original circuit)

• FF area overhead AFF+

• total area overhead A+ = Acomb+ +AFF+

• critical path overhead tc+

Using the tc+, we additionally determined how much of the
critical path overhead of PD can be saved by using PP by
calculating 1− tc+,PP

tc+,PD
, which we will refer as tc+ saving.

The synthesis was done for the ProASIC3 FPGA
A3PE3000L using Precision (Mentor Graphics) for synthesis
and Designer (Microsemi) for placing and routing. The results
are shown in Table I.

PP outperforms PD regarding tc+ with negligible area
overhead difference. PP can save at least 22% of tc+ of PD
and for designs with more stages the saving goes up to 65%.
No correlation can be noticed between wd and tc+ saving.



Acomb+ AFF+ A+ tc+ (ns) A+

AFF,BA

cst wd tc (ns) LT PP LT PP LT PP LT PP LT PP 1− A+,PP

A+,LT

tc+,PP

tc+,LT

4 8 1.89 32 47 64 21 96 68 2.42 5.24 3.00 2.13 29.17% 2.16
4 16 1.88 64 91 128 37 192 128 2.19 6.83 3.00 2.00 33.33% 3.12
4 32 1.90 128 178 256 69 384 247 2.24 7.74 3.00 1.93 35.68% 3.46
4 64 1.90 256 331 512 133 768 464 1.67 8.08 3.00 1.81 39.58% 4.85
8 8 2.77 64 93 128 41 192 134 2.06 4.47 3.00 2.09 30.21% 2.17
8 16 2.77 128 169 256 73 384 242 1.10 5.47 3.00 1.89 36.98% 4.99
8 32 3.10 256 349 512 137 768 486 0.94 6.16 3.00 1.90 36.72% 6.54
8 64 2.71 512 663 1024 265 1536 928 1.38 7.51 3.00 1.81 39.58% 5.46

16 8 2.94 128 177 256 81 384 258 1.82 4.86 3.00 2.02 32.81% 2.66
16 16 3.02 256 334 512 145 768 479 0.89 5.30 3.00 1.87 37.63% 5.96
16 32 3.65 512 685 1024 273 1536 958 1.34 5.26 3.00 1.87 37.63% 3.92
16 64 3.30 1024 1330 2048 529 3072 1859 1.08 6.94 3.00 1.82 39.49% 6.41
32 8 2.77 256 341 512 161 768 502 2.11 3.66 3.00 1.96 34.64% 1.74
32 16 3.47 512 663 1024 289 1536 952 1.22 4.00 3.00 1.86 38.02% 3.29
32 32 3.38 1024 1361 2048 545 3072 1906 0.94 5.05 3.00 1.86 37.96% 5.37
32 64 3.44 2048 2654 4096 1057 6144 3711 1.12 6.75 3.00 1.81 39.60% 6.04

TABLE II
SYNTHESIS RESULTS FOR LTMR AND PIPELINED PBED WITH CLUSTER SIZE scl = 3

scl Acomb+ AFF+ A+ tc+ (ns) 1− A+,PP

A+,LT

tc+,PP

tc+,LT

2 369 265 634 6.38 17.45% 6.79
3 349 137 486 6.16 36.72% 6.54
4 312 97 409 6.55 46.74% 6.96
5 350 73 423 6.34 44.92% 6.74
6 348 65 413 5.73 46.22% 6.09
7 311 57 368 6.63 52.08% 7.04
8 345 49 394 6.05 48.70% 6.43
9 343 41 384 6.55 50.00% 6.96

10 326 41 367 6.51 52.21% 6.92
11 331 41 372 6.37 51.56% 6.77
12 321 33 354 6.36 53.91% 6.76

TABLE III
PIPELINED PBED SYNTHESIS RESULTS FOR STAGE COUNT cst = 8, DATA

WIDTH wd = 32, AND VARIOUS CLUSTER SIZES scl .

B. Comparison with LTMR

We have shown that PP delivers better results than PD regard-
ing tc+. In this section we compare PP with the state-of-the-art
hardening approach LTMR (LT) using the same shift register
configurations from Subsection IV-A. The results are shown
in Table II. In addition to the known parameters from Table I,
following parameters are shown:

• critical path of the unhardened circuit tc
• area overhead per user FF A+

AFF,BA
(BA: bare circuit)

• area overhead saving if PP is used instead of LTMR
1− A+,PP

A+,LT

• critical path overhead factor of PP tc+,PP

tc+,LT

According to the results, at least 29% of the area overhead
caused by LTMR can be saved by using PP. If wd increases,
PP can save more area, but it has a negative impact on tc+.
PP has up to 6.5 times the critical path overhead of LTMR.
Note that we compared not the absolute critical path, which
determines the maximum frequency, but only the overhead,
which adds up to the critical path of the bare circuit.

We gathered additional results by setting cst = 8 and wd =
32 and varying scl between 2 and 12. PP saves more area with
increasing scl, but scl does not have a significant effect on tc+.

V. CONCLUSION

We have presented a new approach for PBED by exploiting
pipeline structures in a circuit, and shown that it can save
from 22% to 65% of the critical path overhead caused by the
direct error detection approach. LTMR has still better timing
performance and the pipelined PBED increases the critical
path overhead by a factor of 2 to 7. As future work, PBED will
be applied on a soft-processor core to get results on a more
complex design. Formalization of transaction-based processing
is required to safely utilize PBED in a system; this is also
planned as future work.

REFERENCES

[1] Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs
Datasheet, Microsemi, November 2013.

[2] K. Varnavas, W. H. Sims, and J. Casas, “The use of field programmable
gate arrays (FPGA) in small satellite communication systems,” in Sev-
enth International Conference on Advances in Satellite and Space Com-
munications (SPACOMM), T. Pham, J. C. Casas, and C.-P. Rückemann,
Eds., 2015.

[3] C. J. Treudler, J.-C. Schröder, F. Greif, K. Stohlmann, G. Aydos, and
G. Fey, “Scalability of a base level design for an on-board-computer for
scientific missions,” in Proceedings of the Data Systems in Aerospace
(DASIA) Conference, 2014.

[4] G. Aydos and G. Fey, “Empirical results on parity-based soft error
detection with software-based retry,” in Nordic Circuits and Systems
Conference (NORCAS), Oct 2015.

[5] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal of Research and Devel-
opment, vol. 6, no. 2, pp. 200–209, April 1962.

[6] M. Nicolaidis and Y. Zorian, “On-line testing for VLSI - a compendium
of approaches,” Journal of Electronic Testing Theory and Applications
(JETTA), vol. 12, pp. 7–20, February 1998.

[7] J. H. Patel and L. Y. Fung, “Concurrent error detection in ALU’s by
recomputing with shifted operands,” IEEE Transactions on Computers,
vol. C-31, no. 7, pp. 589–595, July 1982.

[8] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in 17th IEEE VLSI Test Symposium, 1999, pp.
86–94.

[9] W. Snyder, “Verilog-Perl distribution,” http://www.veripool.org/wiki/
verilog-perl, 2015.

[10] Foreign Language Interface Manual, Mentor Graphics.

http://www.veripool.org/wiki/verilog-perl
http://www.veripool.org/wiki/verilog-perl

