In-circuit Error Detection with Software-based
Error Correction - An Alternative to TMR

Gokee Aydos'? and Gorschwin Fey!?

! DLR, Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen Germany
2 University of Bremen, Institute of Computer Science,
Bibliothekstr. 1, 28359 Bremen Germany
goekce@cs.uni-bremen.de

Abstract. FPGAs are often utilized in space avionics. To protect the
FPGA application data against radiation effects in space, data redun-
dancy can be used. A well-known method is to triplicate the circuit and
eliminate the erroneous circuit output with a local voter (TMR). Alter-
natively, in-circuit error detection with software-based error correction
can be used, if the FPGA works as a co-module next to a processor run-
ning the mission software. In this work, we present an implementation of
this method on a commonly used spacecraft data handling architecture.

Keywords: fault tolerance, FPGA

1 Introduction

Field-programmable gate arrays (FPGAs) are often utilized in space avionics.
FPGAs involved in mission critical applications implement fault tolerance mech-
anisms. One of the reasons is the ionizing radiation in space, which can flip stored
bits in flip-flops (FFs). In the best case, the flipped bits are masked and over-
written in next cycles, having no effect on the system. In the worst case, this
leads to catastrophic failures [4].

Tolerance against bitflips can be implemented using redundancy in space or
time, i.e., by instantiating multiple entities of one circuit (space), or repeating
the same operation for multiple clock cycles on one circuit (time), or also by
combining the both (spacetime) [3]. Mission critical FPGA applications often
use space redundancy, mostly in form of triple modular redundancy (TMR).

In TMR, a module, e.g. a FF or a whole circuit, is triplicated and the outputs
are connected to a voter, which drives the correct output value in case of a failure
in a single module. This facilitates correction of an error in the same clock cycle,
i.e., by only using space redundancy. In presence of tight space constraints, this
overhead can turn into a hurdle for fulfilling the design timing closure and area
requirements. Alternatively, if the overhead of time redundancy is feasible for
an application, the redundancy in space can be reduced and, in return, the
redundancy in time dimension can be increased. We propose an instantiation of
this approach where error detection is done in space, and error correction in time,
only in case of an error. In a system constellation with a processor and an FPGA,



the on-demand time redundancy can be easily implemented in software. We call
this method in-circuit error detection with software-based error correction. In
the following, a common spacecraft on-board data handling (OBDH) subsystem
architecture and an implementation of this method on this architecture will be
shown.

2 Application to a Typical OBDH Architecture

The OBDH subsystem of a spacecraft typically handles the communication from
the ground station to other subsystems. A simplified model of a typical OBDH
architecture is shown on Fig. 1.

Subsystem “

OBDH Subsystem

Fig. 1. Simplified model of a typical OBDH architecture.

The processor runs the mission software and the FPGA implements interface
protocol circuits required by various subsystems on board of a satellite. The
processor uses the FPGA for communicating with the subsystems.

The FPGA implements the memory-mapped interfaces for the subsystems.
Consequently, from the software point of view, the FPGA is a remote memory.
To access the remote memory, the software sends memory requests to the FPGA
and the FPGA replies every request with a response. If a particular request is
not responded (within a timeout), then the software can retry the last request.
There are two kinds of memory requests, write and read. Every request can
contain memory accesses to particular memory addresses.

In our model, the FPGA design to which the fault tolerance method is not
applied, consists of three circuits (A), (B) and (C), shown as white boxes in Fig.
2. (A) stores the requests from the software and responses sent from (B). (B)
transforms the requests from the software to actual memory signals for (C).

We assume that the processor, the subsystems, and the circuits (A) and (C)
are reliable, i.e., immune against bitflips. So, only (B) has to be hardened.

The gray boxes in Fig. 2 show the circuits for error detection and handling
after hardening the design. The error detection circuit checks for data integrity
in (B) to detect bitflips, e.g., by using concurrent error detection (CED) [2]. An
example for CED is to generate parity for every register in (B) and check for
data integrity in the next cycle. In case of detected bitflips, the error handling
module engages the countermeasures. In this implementation, the error handling



EE— PE—
FIFO data address
(——Gj read en.—]

Reliable Unreliable data Reliable
Circuit Circuit data: Mem. | Circuit
(A) @ dat B) —read en. (©)

FIFO ’G: N :
f iread en.— karlte en N
Error
reset (Detection
error
Error
Loutput en. b output en.

Fig. 2. In-circuit error detection applied on the unreliable circuit (B).

module masks the output signals of (B) and resets it. The masking occurs in one
clock cycle, so a fault in (B) does not propagate to the neighboring circuits, i.e.,
the circuit is isolated.

Through the specified timeout, the software is always aware of a failure in
(B). Upon failure of (B), a request is repeated and no request gets lost.

The shown hardening method is useful on circuits like protocol converters,
where the circuit acts as an intermediate module. If the circuit interface includes
control signals (e.g., write/read enable in Fig 2) which are maskable, then the
error can be masked using a relatively short path compared to correcting the
error by resetting the circuit.

Like TMR, the method can be applied after the behavioral synthesis on
the register transfer level, therefore it is transparent to the application. If the
communication protocol between the software and the circuit permits a timeout,
then the method is also transparent to the software.

This method concentrates on the circuit bits of an FPGA application and
not on the configuration bits, where the FPGA application itself is stored. It is
crucial to protect also the configuration bits from the ionizing radiation, if an
SRAM-based FPGA is used. If a flash-based FPGA is used, the bitflips on the
configuration are negligible [1].

References

1. Battezzati, N., Sterpone, L., Violante, M.: Reconfigurable Field Programmable Gate
Arrays for Mission-Critical Applications, chap. 7. Springer (2011)

2. Mitra, S., McCluskey, E.J.: Which concurrent error detection scheme to choose? In:
International Test Conference Proceedings. pp. 985-994. IEEE (2000)

3. Nicolaidis, M.: Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: 17th IEEE VLSI Test Symposium. pp. 86-94 (1999)

4. Petersen, E.: Single Event Effects in Aerospace, chap. 1. John Wiley & Sons (2011)



